Demonstration of SpeakQL: Speech-driven
Multimodal Querying of Structured Data

Vraj Shah Side Li

Kevin Yang Arun Kumar

Lawrence Saul

University of California, San Diego
{vps002,s71i,khy009,arunkk,saul}@eng.ucsd.edu

ABSTRACT

In this demonstration, we present SpeakQL, a speech-driven
query system and interface for structured data. SpeakQL
supports a tractable and practically useful subset of regular
SQL, allowing users to query in any domain with unbounded
vocabulary with the help of speech/touch based user-in-the-
loop mechanisms for correction. When querying in such
domains, automatic speech recognition introduces countless
forms of errors in transcriptions, presenting us with a tech-
nical challenge. We characterize such errors and leverage
our observations along with SQL’s unambiguous context-
free grammar to first correct the query structure. We then
exploit phonetic representation of the queried database to
identify the correct Literals, hence delivering the corrected
transcribed query. In this demo, we show that SpeakQL helps
users reduce time and effort in specifying SQL queries signif-
icantly. In addition, we show that SpeakQL, unlike Natural
Language Interfaces and conversational assistants, allows
users to query over any arbitrary database schema. We al-
low the audience to explore SpeakQL using an easy-to-use
web-based interface to compose SQL queries.

ACM Reference Format:

Vraj Shah Side Li Kevin Yang Arun Kumar Lawrence
Saul. 2019. Demonstration of SpeakQL: Speech-driven Multimodal
Querying of Structured Data. In 2019 International Conference on
Management of Data (SIGMOD °19), June 30-Fuly 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3299869.3320224

1 INTRODUCTION
Automatic Speech Recognition (ASR) is the key enabler of

many speech-driven applications on emerging device envi-
ronments such as smartphones and tablets and even personal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06....$15.00
https://doi.org/10.1145/3299869.3320224

conversational assistants such as Siri, Cortana, and Alexa.
The recent success of speech-driven interfaces has motivated
an important fundamental question: How should a speech-
driven system be designed to query structured data?

There has been a stream of research on studying new
querying modalities like touch-oriented [2], visual [7] and
natural language interfaces (NLIs) [3, 4], especially for con-
strained querying environments such as smartphones, tablets,
and conversational assistants. At the user level, almost all of
these query interfaces obviates the need to specify SQL. How-
ever, what is missing from the prior work is a speech-driven
interface for regular SQL or other structured querying.

One might wonder: Why dictate SQL and not just use NLIs
or visual interfaces? Existing typed or spoken NLIs are re-
stricted by the capability of the natural language parsing
tools to identify the semantics of the natural language. The
ambiguity of human language often causes query misun-
derstanding. The lack of well-defined semantics for correct
answers further aggravate this situation. Conversational as-
sistants allow users to query curated app-specific datasets,
and not any arbitrary database schemas. Hence, NLIs com-
promise query sophistication in order achieve high usability
as shown in Figure1(A) [1]. As a result, current NLIs are
imposing more structure to mitigate the Al-hard natural lan-
guage understanding (NLU) problem [3], as shown by Figure
1(B). They are moving to the right towards the “cliff" of am-
biguity, where on the right hand side of the cliff, we have
languages with unambiguous context-free grammars (CFG).

On the other hand, SQL is already a structured English
query language, which provides high query sophistication
and less ambiguity due to its CFG and succinct nature. Struc-
tured data querying is ubiquitous in many domains such as
enterprise, C-suite, and healthcare. Typing queries in SQL is
the gold standard for such querying. However, typing SQL
is painful in the constrained environments. A spoken SQL
interface could speed up the query specification process. In
this work, we aim to achieve SQL-level query sophistication,
while also improving ease of use, as shown in Figurel(A).
This would allow users to interact with the structured data
using spoken queries over any arbitrary database schema.
Thus, instead of forcing all users to only use NLIs, we lever-
age ASR for SQL to make spoken querying more “natural”
without losing the sophistication of unambiguous CFGs.

https://doi.org/10.1145/3299869.3320224
https://doi.org/10.1145/3299869.3320224
https://doi.org/10.1145/3299869.3320224

(A) e 1) Typed sQL
1= 2) Typed NLI
g @ 3 3) Spoken NLI
.E = 7 4) Visual Workflow
g 4 5) Touch/ Gestural
2 6 Spoken SQ
2 3
Query Sophistication
(8)
[speakaL 3.0] [speakaL2.0] [speakaL1.0]
:]
()
a —— — —t
Natural —oom_orrent s o Cliff SoL C AssEmBLY

English Al-hard NLU Unambiguous
problem CFG

Figure 1: (A) Qualitative comparison of trade-off be-
tween ease of use and currently feasible query sophis-
tication. (B) Contrasting SpeakQL’s goals and current
NLIs in terms of the “naturalness" of query language.

In this demo, as the first major step in our vision, we de-
liver the first spoken querying system for a subset of SQL.
We call our system SpeakQL 1.0. Complementary to existing
NLIs, visual and touch-oriented interfaces, SpeakQL offers
the following functionalities. First, SpeakQL allow users to
query structured data using regular SQL with a tractable
subset of the CFG grammar. Second, and most importantly,
SpeakQL allow users to query in any application domain over
any database schema. Finally, SpeakQL allows users to per-
form multimodal interactive query correction using speech
and touch with a screen display. In summary, SpeakQL is
an open-domain, speech-driven, and multimodal querying
system for regular SQL that allows users to dictate the query
and perform interactive correction using speech/touch.

From an ASR’s perspective, unlike regular English speech,
SQL speech, presents several interesting and novel chal-
lenges. There exist infinite kinds of literal instances, such
as 01d_123A in SQL. ASR might split a single token from
SQL’s standpoint into multiple tokens. Hence, ASR fails to
transcribe such tokens correctly, since they are simply not
present in their vocabulary. Such non-vocabulary tokens
occur more in SQL than natural English. We call this the
unbounded vocabulary problem, and it is a key technical chal-
lenge for SpeakQL. Note that this problem has not been
solved even for spoken NLIs. For example, every time a non-
vocabulary token is spoken, Cortana returns “Sorry, I didn’t
get that". Hence, addressing this problem benefits spoken
NLIs too. Moreover, ASR might fail to generate correct tran-
scription even for in-vocabulary homophonic tokens, e.g.,
“men" vs. “min." These myriad kind of transcription errors
present SpeakQL with yet another technical challenge.
Relationship to prior work. Speech recognition for data
querying has been explored in some prior systems. Nuance’s
Dragon Naturally Speaking allows users to query using spo-
ken commands to retrieve the text content of a document [6].
However, to the best of our knowledge, there does not exist

a query interface for spoken SQL. The recent system Echo-
query [4] is designed as a conversational NLI in form of
an Alexa skill. Although, this system certainly enables non-
experts to query data easily, ASR can cause a series of errors
and would restrict users from specifying “hard" queries. In
addition, such a system might impose a higher cognitive
load on users when a large query result is returned; a screen
mitigates such issues, e.g., as in the Echo Show. Moreover,
a recent user study [5] on a text messaging app conducted
by Baidu, showed that the input rate is significantly faster
when users uses speech to perform only the first dictation,
and then errors are corrected and refined through touch.
SpeakQL’s novel multimodal query interface allows users to
easily mix speech-driven query specification with speech-
driven or touch-driven interactive query correction.

2 SYSTEM ARCHITECTURE

In recent years, deep neural networks have led to significant
advances in ASR engines, making them powerful enough for
many real-world applications. To reduce the need of addi-
tional engineering effort in developing a SQL-specific ASR,
we instead use an existing ASR technology and focus solely
on issues related to SQL as desribed below.

First, in SQL, there exist only three types of tokens: Keywords,
Special Characters (“SplChar"), and Literals. SQL Keywords
such as SELECT and FROM, and SplChars such as * and = have
a finite vocabulary of tokens, that occurs only from the SQL
grammarl. A literal can be a table name, an attribute name
or an attribute value. Table names and attribute names have
a finite vocabulary. However, the attribute value can be any
value from the database or any generic value. Hence, the
domain size of the Literals is likely infinite.

Second, the ASR engine has some interesting points of fail-
ure when transcribing SQL. The ASR may convert Literals
into SplChars or Keywords and vice versa when tasked with
homophones. For instance, SQL Keyword min detected as
“men." Even a single-token transcription might be completely
wrong because the token is simply not present in the ASR’s
vocabulary. Even worse, ASR might split a non-vocabulary to-
ken like 01d_123A into a series of tokens in the transcription
output, possibly intermixed with Keywords and SplChars.

Based on these observations, we propose to segregate the
task of structure determination from the task of literal de-
termination. Figure 2 shows the complete four-component
end-to-end system. This decoupling of structure and literal
determination is a critical design decision that helps us han-
dle the problem of unbounded vocabulary. SpeakQL has four

Ihttp://forcedotcom.github.io/phoenix

http://forcedotcom.github.io/phoenix

Automatic

Spoken SQL Query speech ASR Output(s) Structure
Recognition Determination
Select Salary (ASR) Engine || Select Sales From

From Employees
Where Name
Equals John

Employers wear
name equals Jon

SQL Grammar
SplChar Handling

1}
1
Attribute values - _Clayse I-.evel i
e dictation H
] !
Syntactically Filled Literal S%d Select Salary -
Correct SQL : Placeholders .
Lnte.ral) ———|S/| From Employees 5{
e) Determination =
| SelectV1 | S| Where Name = “Jon”

Database Metadata

Phonetic Representation:
Table/attribute names,

Interactive
Query Correction

i

| FromVv2 |
here

T
Interactive Query Display !

sal iysmcﬂ FROM || WHERE || J0IN |
Q EMPLOVEES | DEPT | MANAGER |

Keyboard [[sauary | name][1)

Figure 2: End-to-end Architecture of SpeakQL. We show an example of a simple spoken SQL query, and how it
gets converted to a query displayed on a screen, which the user can correct interactively.

major components: ASR Engine, Structure Determination
module, Literal Determination module and Interactive Dis-
play module. We describe each component below.

ASR Engine. This component transcribes the recorded spo-
ken SQL query to a textual output. A modern speech recog-
nition system consists of two major components: acoustic
model and the language model. The acoustic model repre-
sents how sounds combine to produce words and the lan-
guage model represents how words combine to produce ut-
terances. The language model essentially captures the vocab-
ulary that the application is likely to use. We utilize Azure’s
Custom Speech Service? to create a custom language model
by training on a dataset of spoken SQL queries. For the acous-
tic model, we use Microsoft’s state-of-the-art search and dic-
tation model. Figure 2 shows a dictated SQL query. The tran-
scription obtained by ASR engine could be select sales
from employers wear first name equals Jon.

Structure Determination. This component converts the
ASR transcription to a syntactically correct SQL structure.
SQL structure fixes the Keywords and SplChars, while Liter-
als are masked out with numbered placeholder variables. We
leverage CFG of our currently supported subset of SQL to
obtain all possible ground truth structures. A ground truth
structure is a syntactically correct SQL string obtained from
our SQL grammar by applying the production rules recur-
sively. We obtain the closest matching structure by doing a
similarity search based on edit distances with ground truth
structures. The detected structure in our running example
is Select x1 From x2 Where x3 = x4. Here, the Literals
are represented as placeholder items x1, x2, x3 and x4.

Literal Determination. The Literal Determination compo-
nent determines a ranked list of Literals for each placeholder
variable using both the raw ASR output and a pre-computed
phonetic representation of the database being queried. The
phonetic representation of the existing Literals in the data-
base helps us disambiguate the words from transcription

2westus.cris.ai/Home/CustomSpeech

output that sounds similar. For instance, variable x1 is re-
placed as a top k list of attribute names. Phonetically, among
all the attribute names, Salary is the closest to Sales, and
thus, x1 would be bound to Salary.

Interactive Display. This component displays the best pos-
sible transcription generated by SpeakQL. Even with our
query determination algorithms, there is still a possibility
that some tokens in the transcription are incorrect, particu-
larly for Literals not present in ASR vocabulary. Hence, this
component allows user to perform interactive query correc-
tion through speech and/or touch. To correct the displayed
query, the user can dictate/re-dictate queries at the clause
level or use the novel SQL keyboard tailored to reduce their
effort in correcting the displayed query.

3 DEMONSTRATION

Data. In the demonstration, we plan to show the use of

SpeakQL on two real world database schemas, the Employees

Sample Database from MySQL (dev.mysql.com/doc/employee/
en/) and the Yelp Database (kaggle.com/yelp-dataset). Note

that ASR is trained on spoken SQL queries from the Employ-
ees database. Hence, querying on the Yelp database will test

the generalizabilty of SpeakQL to new database schemas.

This will showcase that SpeakQL can be utilized to query

any arbitrary database schema.

Query Set. The audience will dictate several SQL queries
using an interactive web interface on a Samsung Tablet. Two
tablets would be available at the demo. The queries will
be equally divided into two segments: simple and complex.
Simple queries have less than 20 tokens; the rest are con-
sidered complex. Thus, composing a complex query imposes
a higher cognitive load relative to a simple query. Natural
language description of the query along with the database
schema will be provided to the participant. For the demon-
stration purpose, the interface would include 6 such queries.
The queries includes most Select-Project-Join-Aggregation
(SPJA) queries along with ORDER BY and LIMIT, without any
restrictions on the number of joins, aggregates or predicates.

westus.cris.ai/Home/CustomSpeech
dev.mysql.com/doc/employee/en/
dev.mysql.com/doc/employee/en/
kaggle.com/yelp-dataset

Result:

SELECT AVG (SALARY), FIRSTNAME
FROM EMPLOYEES NATURAL JOIN SALARIES
WHERE GENDER= 'M' GROUP BY FIRSTNAME

Q SELECT - AVG (SALARY) FIRSTNAME
=l </> [= </> [=) </> [=) </> [+
\!} FROM v EMPLOYEES NATURAL JOIN SALARIES
CepE HepE EepE HepE
Q WHERE - GENDER =" ™

E<pr B BepE B E

Q GROUP BY FIRSTNAME

= <> = <>

SQL Keywords

‘ Schema ‘

AND AVG BETWEEN | COUNT 1 FROM GROUPBY]
\ LIMIT IN MAX MIN OR ORDER BY
{ SELECT SUM WHERE NATURALJOIN’ * (]) J
Table Names:) " Attribute Names: ‘ ‘
Departments BirthDate

DepartmentEmployee DepartmentNumber

DepartmentManager DepartmentName
Employees EmployeeNumber
Salaries FirstName

Titles FromDate

Date: Type it:
2000-06-15 Marsh

Marsha
Record Marshall

Figure 3: SpeakQL Interface. (A) The Interactive Display showing the dictated query after being processed by the
SpeakQL engine, as well as the touch-based editing functionalities and clause-level redictation capabilty. (B) Our
simple SQL keyboard designed for touch-based editing of the rendered query string.

This will demonstrate that SpeakQL can effectively handle
meaningful and practically useful subset of regular SQL Data
Manipulation Language (DML).

Walkthrough. Each participant will be first made familiar
with the database schema and SpeakQL interface through an
introductory video®. The introductory video covers a com-
plete walkthrough of the interface and allow users to learn
about several functionalities of the system. The participant
would interact with the SpeakQL interface shown in Figure
3 (A). The user can dictate the entire query in one go using
the “Record" button at the bottom right. At the same time,
the user can dictate or correct (through re-dictation) the
queries at the clause level using record button to the left of
each clause. For instance, the user can choose to dictate only
the FROM clause or WHERE clause. +/- buttons allows users
to insert/delete Keywords and Literals from the query. The
notable </> button allows for a quick insertion or removal
of SplChars. If the displayed literal is incorrect, the user can
touch its box and a drop-down menu will display the ranked
lists of alternatives for that literal.

Figure 3 (B) shows the novel “SQL Keyboard" that con-
sists of the entire lists of SQL Keywords, table names, and
attribute names. Since the attribute values (including dates)
can be potentially infinite, they cannot be seen in a list view.
But the user can type with the help of an auto complete
feature. Dates can be specified easily with the help of a scrol-
lable date picker. Such keyboard design allows for a quick
in-place editing of stray incorrect tokens, present anywhere
in the SQL query string. In the worst case, if SpeakQL fails to
identify the correct query structure and/or Literals, the user
can type one token, multiple tokens, or the whole query from

3https://vimeo.com/295693078

scratch in the query display box, or redictate the clauses or
the whole query again. Finally, the user can run the correct
query over the underlying RDBMS with the help of a “Run
Query" button and see the query results on the screen.

Leaderboard Competition. In order to make this demon-
stration more fun, we plan to run a competition that tests au-
dience’s proficiency in speaking SQL. The users that are inter-
ested in participating will dictate a single complex SQL query
using the SpeakQL interface. We will maintain a leaderboard
of top participants who finished the query in the shortest
amount of time. The winner and runner-up will be rewarded
with gift cards.

Acknowledgments. This work was supported in part by the
National Science Foundation under grant 1IS-1816701. All
findings and opinions expressed in this work are those of the
authors and do not necessarily reflect the views of the NSF.
We thank the members of UC San Diego’s Database Lab for
their feedback on this work.

REFERENCES

[1] D. Chandarana et al. 2017. SpeakQL: Towards Speech-driven Multi-
modal Querying. HILDA (2017).

[2] A.Crotty et al. 2015. Vizdom: Interactive Analytics Through Pen and
Touch. PVLDB (2015).

[3] F.Lietal 2014. Constructing an interactive natural language interface
for relational databases. PVLDB (2014).

[4] G.Lyons etal. 2016. Making the case for query-by-voice with echoquery.
SIGMOD (2016).

[5] S.Ruan et al. 2016. Speech Is 3x Faster than Typing for English and
Mandarin Text Entry on Mobile Devices. CoRR (2016).

[6] https://www.nuance.com/dragon.html. 2018. Nuance’s Dragon Speech
Recognition.

[7] M. Zloof et al. 1975. Query by Example. National Computer Conference
and Exposition (1975).

https://vimeo.com/295693078
https://www.nuance.com/dragon.html

	Abstract
	1 Introduction
	2 System Architecture
	3 Demonstration
	References

