
SpeakQL: Towards Speech-driven MultimodalQuerying

Vraj Shah
University of California, San Diego

vps002@eng.ucsd.edu

1 INTRODUCTION
Speech-based inputs have become popular in many appli-
cations on constrained device environments such as smart-
phones and tablets, and even personal conversational assis-
tants such as Siri, Alexa, and Cortana. Inspired by this recent
success of speech-driven interfaces, in this work, we consider
an important fundamental question: How should one design
a speech-driven system to query structured data?
Recent works have studied new querying modalities like

visual [5, 9], touch-based [4, 8], and natural language in-
terfaces (NLIs) [6, 7], especially for constrained querying
environments such as tablets, smartphones, and conversa-
tional assistants. The commands given by the user are then
translated to the Structured Query Language (SQL). But con-
spicuous by its absence is a speech-driven interface for reg-
ular SQL or other structured querying. One might wonder:
Why dictate structured queries and not just use NLIs or vi-
sual interfaces? From a practical standpoint, many users,
including in the C-suite, enterprise, Web, and other domains
are already familiar with SQL (even if only a subset of it)
and use it routinely. A spoken SQL interface could help them
speed up query specification, especially in constrained set-
tings such as smartphones and tablets, where typing SQL
would be painful. More fundamentally, there is a trade-off
inherent in any query interface, as illustrated in Figure 1(A)
[2]. SpeakQL aims for almost full SQL sophistication, while
improving ease of use using both speech and touch. While
NLIs are improving, they increasingly rely on more key-
words and structured interactions to mitigate the AI-hard
natural language understanding problem [3, 6], as shown by
Figure 1(B). They are moving to the right towards the “cliff",
where on the right hand side of the cliff, we have languages
with unambiguous context-free grammars. SQL, however, is
already a structured English query language. Thus, instead
of forcing all users to only use NLIs, we study how to ex-
ploit ASR for SQL and make spoken querying more “natural"

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5643-5/19/06.
https://doi.org/10.1145/3299869.3300093

Natural
English Unambiguous

CFG

ASSEMBLY
Current NLIs

AI-hard NLU
problem

Cliff

(B)

SpeakQL 2.0 SpeakQL 1.0SpeakQL 3.0

1

6

7
4

5
2

3 1) Typed SQL
2) Typed NLI
3) Spoken NLI
4) Visual Workflow
5) Touch/ Gestural
6) Spoken SQL
7) SpeakQL 1.0

Query Sophistication

Ea
se

 o
f

u
se

(A)

Figure 1: (A) Qualitative comparison of trade-off between
ease of use and currently feasible query sophistication. (B)
Contrasting SpeakQL’s goals and current NLIs in terms of
the “naturalness" of the query language.

without losing the sophistication enabled by unambiguous
CFGs.
Desiderata.We aim to build an open-domain (support for
queries in any application domain over any database schema),
speech-driven, and multimodal querying system wherein the
user can dictate the query and perform interactive correction
using touch and/or speech, with the query results displayed
on a screen. We plan to build different variants of our system,
as shown in Figure 1 (B): SpeakQL 1.0 for a regular SQL
language, SpeakQL 2.0 for a new speech-friendly dialect of
SQL and SpeakQL 3.0 for a natural language. In the current
work, the focus is only on regular SQL.
Technical Challenge.Non-vocabulary tokens (from anASR
perspective) are far more likely in SQL due to the infinite
variety of database instances across domains. For instance,
it is unlikely that any ASR engine can exactly recognize a
literal like CUSTID_1729A. We call this the unbounded vocab-
ulary problem; addressing this problem is a core technical
challenge for SpeakQL.
2 APPROACH
We present the complete four-component system in Figure 2.
The ASR Wrapper records the spoken SQL query, invokes a
modern ASR tool, and obtains the transcription output. The
Structure Determination component post-processes the ASR
output(s) to obtain a syntactically correct SQL statement
with placeholders for literals, where keywords and SplChars
are fixed. It makes use of SQL grammar to generate all possi-
ble ground truth structures. The closest matching structure is
retrieved by doing a similarity search based on edit distances

https://doi.org/10.1145/3299869.3300093

Spoken SQL Query

Select Salary

From Employees

Where Name

Equals John

Automatic
Speech

Recognition
(ASR) Engine

ASR Output(s)

Select Sales From

Employers wear

name equals Jon

Structure
Determination

SQL Grammar
SplChar Handling

Select V1

From V2

Where

V3 = “V4”

Literal
Determination

Syntactically
Correct SQL

Database Metadata

Phonetic Representation:
Table/attribute names,

Attribute values

Filled Literal
Placeholders

Interactive Query Display

Interactive
Query Correction

Clause Level
dictation

Select Salary

From Employees

Where Name = “Jon”

SQL
Keyboard

Figure 2: End-to-end Architecture of SpeakQL

with the ground truth structures. The Literal Determination
component “fills in the blanks" for the literal placeholders
using both the raw ASR outputs and pre-computed phonetic
representation of the dataset being queried. This decoupling
of structure and literal determination is a crucial design de-
cision that helps us attack the unbounded vocabulary prob-
lem. Finally, there is an Interactive Display component that
displays a single SQL statement that is the best possible
transcription generated by our system. Even with our query
determination algorithms, it might turn out that some of
the tokens in the transcription are incorrect, especially for
non-dictionary literals. Thus, we support user-in-the-loop
query correction and provides speech or touch/click-based
mechanisms for an interactive query correction. The users
can either choose to dictate queries at the clause level or
make use of a novel SQL keyboard.

3 EVALUATION
Data. Since there are no publicly available datasets for spo-
ken SQL, we create our own dataset using the publicly avail-
able database schema: Employees Sample Database [1]. Firstly,
we generate a dataset of 1250 SQL textual queries (750 for
training and 500 for testing). Then, we use Amazon Polly to
generate spoken SQL queries from these queries in text.
ASR. We use Azure’s Speech Services that allows us to cus-
tomize the vocabulary of the speech recognizer.
Results. Figure 3 shows the top1 results on the test data. We
can see that the recall rates are already high for keywords
and SplChar using just the ASR. For literals, however the
recall rate is quite low (mean of 0.53). With SpeakQL, we
achieve almost maximum possible precision and recall (mean
of 0.98) for keywords and SplChars. While, even for literals
the accuracy improves significantly. Figure 4 (A) shows the
cumulative distribution (CDF) of the effort required from
the end of the user in order to get to the desired query. The
units of effort is the number of insertions, deletions or sub-
stitutions required at the token level in order to obtain the
correct query, while using SpeakQL interface. For example,
to correct 75% of the queries in test set, less than 4 units of
effort is required. Figure 4 (B) plots the CDF for the running
time of SpeakQL. We notice that almost 90% of the queries
in the test set can be finished well within 2 seconds.

Keyword
Recall
Rate

SplChar
Recall
Rate

Literal
Recall
Rate

Keyword
Precision

Rate

SplChr
Precision

Rate

Literal
Precision

Rate

ASR 0.92 0.96 0.53 0.84 0.87 0.49

SpeakQL 0.97 0.98 0.80 0.98 0.98 0.85

Figure 3: Mean Error Metrics: Precision and Recall

C
D

F

B

C
D

F

Units of Effort Time (in sec)

A A

Figure 4: (A) Cumulative distribution of units of effort
(B) Cumulative distribution of SpeakQL running time
User Study. 15 participants who were familiar with SQL
were recruited through a short quiz. Each participant com-
posed 12 queries on a tablet device, and for each query they
performed two different task. In the first task, the partici-
pant had access to SpeakQL interface which allowed them
to dictate a SQL query and perform interactive correction
using both touch and speech. In the second task, the partic-
ipant typed the SQL query from scratch with no access to
our interface. The queries were divided into two segments:
simple and complex. The simple queries have less than 20
tokens, while the queries that have 20 tokens or larger are
the complex ones. Thus, composing a complex query would
require a higher cognitive load relative to a simple query. We
record the end to end time taken to perform both the tasks
and evaluate our system using 180 data points (15 partici-
pants, 12 queries). We noticed a speedup of 2.4x on average
(geomean) for the simple queries and a speedup of 2.9x on av-
erage (geomean) for the complex ones, when using SpeakQL
in comparison with raw typing.
4 CONCLUSION
While the current space of natural language interfaces is
grappling with the AI-hard problem of NLU, our work exploit
structured information in the underlying language to make
spoken querying more powerful and usable in practice. Thus,
this work sets the stage in the direction of making a speech-
first query language.

REFERENCES
[1] [n. d.]. Employees Dataset. dev.mysql.com/doc/employee/en
[2] Dharmil Chandarana, Vraj Shah, Arun Kumar, and Lawrence Saul. 2017.

SpeakQL: Towards Speech-drivenMulti-modal Querying. In Proceedings
of the 2nd Workshop on Human-In-the-Loop Data Analytics. ACM, 11.

[3] Alexa commands. 2018. https://www.cnet.com/how-to/
amazon-echo-the-complete-list-of-alexa-commands

[4] Andrew Crotty et al. 2014. Vizdom: Interactive Analytics through Pen
and Touch. In VLDB Demo.

[5] Oracle SQL Developer. 2008. oracle.com/technetwork/issue-archive/
2008/08-mar/o28sql-100636.html

[6] Fei Li and HV Jagadish. 2014. Constructing an interactive natural
language interface for relational databases. Proceedings of the VLDB
Endowment 8, 1 (2014), 73–84.

[7] Gabriel Lyons et al. 2016. Making the Case for Query-by-Voice with
EchoQuery. In SIGMOD Demo.

[8] Arnab Nandi et al. 2014. Gestural Query Specification. In VLDB.
[9] Moshé M. Zloof. 1975. Query by Example. In National Computer Con-

ference and Exposition.

dev.mysql.com/doc/employee/en
https://www.cnet.com/how-to/amazon-echo-the-complete-list-of-alexa-commands
https://www.cnet.com/how-to/amazon-echo-the-complete-list-of-alexa-commands
oracle.com/technetwork/issue-archive/2008/08-mar/o28sql-100636.html
oracle.com/technetwork/issue-archive/2008/08-mar/o28sql-100636.html

	1 Introduction
	2 Approach
	3 Evaluation
	4 Conclusion
	References

