
How do Categorical Duplicates Affect ML? A New Benchmark
and Empirical Analyses [Experiment, Analysis & Benchmark]

Vraj Shah
†

IBM Research

vraj@ibm.com

Thomas Parashos

California State University,Northridge

thomasjparashos@gmail.com

Arun Kumar

University of California, San Diego

arunkk@eng.ucsd.edu

ABSTRACT
The tedious grunt work involved in data preparation (prep) before

ML reduces ML user productivity. It is also a roadblock to industrial-

scale cloud AutoML workflows that build ML models for millions of

datasets. One important data prep step for ML is cleaning duplicates

in the Categorical columns, e.g., deduplicating CAwith California in
a State column. However, how such Categorical duplicates impact

ML is ill-understood as there exist almost no in-depth scientific

studies to assess their significance. In this work, we take the first

step towards empirically characterizing the impact of Categorical
duplicates on ML classification with a three-pronged approach.

We first study how Categorical duplicates exhibit themselves by

creating a labeled dataset of 1262 Categorical columns. We then

curate a downstream benchmark suite of 14 real-world datasets to

make observations on the effect of Categorical duplicates on three

popular classifiers. We finally use simulation studies to validate

our observations. We find that Logistic Regression and Similar-
ity encoding are more robust to Categorical duplicates than two

One-hot encoded high-capacity classifiers. We provide actionable

takeaways that can potentially help AutoML developers to build

better platforms and ML practitioners to reduce grunt work. While

some of the presented insights have remained folklore for practi-

tioners, our work presents the first systematic scientific study to

analyze the impact of Categorical duplicates on ML and put this

on an empirically rigorous footing. Our work presents novel data

artifacts and benchmarks, as well as novel empirical analyses to

spur more research on this topic.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/anon-categdups/CategDedupRepo.

1 INTRODUCTION
Automated machine learning (AutoML) is beginning to increase ac-

cess to ML for both small-medium enterprises and non-ML domain

experts. This has led to the emergence of several platforms such

as Google Cloud AutoML [5], Microsoft’s AutomatedML [8], and

H2O Driverless AI [6] with the promise to automate the end-to-end

ML workflow without any human-in-the-loop. Since ML prediction

accuracy is the most critical in AutoML environments, many works

have studied the automation and impact of algorithm selection,

hyperparameter search, and optimization heuristics on ML [47, 51].

Also, recently there is a growing interest for studying how data

prep specifically affects downstream ML [59, 65, 66].

Data prep for ML remains particularly challenging on struc-

tured data. It involves manual grunt work that is both tedious and

†Work done at University of California, San Diego and at IBM Research.

Table 1: A simplified dataset for ML Churn Prediction.

Name Gender State Title Contract Zipcode Density MostCommon
Crime_Zipcode

Churn

John Male California sr.
Scientist

monthly 93449 727 BURG ‘Y’

Jerry Mail CA snr
scientist

Month-
to-month 91042 563 burglary ‘N’

time-consuming. Even AutoML users are often asked to manually

perform many data prep steps before using their platforms [4]. Sur-

veys of AutoML users have repeatedly identified such challenges in

conducting data prep [41, 81]. One issue that they often encounter

is duplicates in the columns that are Categorical, which assumes

mutually exclusive values from a known finite set. This can require

significant manual effort to fix duplicates even if a single Categorical
column contains them in a data file.

Consider a dataset to be used for a common ML classification

task in Table 1. Duplicates, categories referring to the same real-

world object, occur in many Categorical columns such as Gender,
State, Title, and Contract. Note that Name is not Categorical since it
offers no discriminative power and cannot be generalized for ML.

The presence of duplicates within a Categorical column can poten-

tially dilute signal strength that one can extract for ML. Thus, an

ML practitioner would often deduplicate categories before ML. We

further discuss the conundrum for an ML practitioner in Section 3.

Even, AutoML platforms often suggest users to manually inspect

Categoricals and consolidate duplicates whenever they arise, as part
of their guidelines for obtaining an accurate model [3]. This can

involve non-trivial amount of deduplication effort at a Categorical
column-level as duplicates can arise as misspellings, abbreviations,

and synonyms, even within the same column. Note that this prob-

lem is related but complementary to entity deduplication issues

studied in the data cleaning literature, as we explain in Section 2.1.

In this paper, we ask: How do Categorical duplicates impact com-
monly used ML classifiers? Is category deduplication effort even worth-
while for ML? Is it always needed regardless of the employed Cate-
gorical encoding scheme? We take a step towards answering these

questions by developing an in-depth scientific understanding of the

importance of category deduplication for ML classification (hence-

forth referred to as “ML”). Our objectives are two-fold. (1) Perform

an extensive empirical study to measure the impact of Categorical
duplicates on ML and distill the findings into actionable insights

for handling them. This can help ML practitioners decide when and

how to prioritise their cleaning effort. Moreover, this can enable

AutoML platform builders design better ML workflows. (2) Present

critical artifacts that can help advance the science of building Au-

toML platforms by providing researchers an apparatus to tackle

open questions in this direction.

https://github.com/anon-categdups/CategDedupRepo

Approach Overview.We identify that the impact on ML accuracy

in presence of Categorical duplicates can be characterized with

several confounders such as their duplication properties, training

data properties, Categorical encoding, and ML model. Consider-

ing this, we make three-part contributions to cover our goals. (1)

We produce labeled dataset to study how real-world Categorical
duplicates arise. (2) We create a downstream benchmark suite to

phenomenalise the impact on ML on real-world data containing

Categorical duplicates with multiple confounders. (3) Significance

of each confounder is hard to discern when all confounders act

together. We use simulation study to disentangle the impact with

each confounder and explain the phenomenon discretely.

Empirical Evaluation. An empirical comparison of our down-

stream benchmark reveals that category deduplication can often

improve the ML accuracy significantly, e.g., the median lifts in

% accuracies due to category deduplication on One-hot encoded
Logistic Regression (LR), Random Forest (RF), and artificial neural

network (ANN) are 0.6, 1.6, and 2 (over 14 datasets) resp. Thus, LR
gets impacted much less with Categorical duplicates than RF and
ANN. Overall, wemake eight such observations on the significance of
confounders with downstream benchmark. We validate them with

simulation study and provide explanations into how ML models

with different biases behave with Categorical duplicates.

Takeaways for Practitioners.We distill our empirical analysis

into a handful of actionable takeaways for ML practitioners and

AutoML developers. For instance, LR is more robust to the adverse

impact of Categorical duplicates than high-capacity RF and ANN as it
overfits less. Also, Similarity encoding [38] and Transformer-based

embedding [61] are more robust than other encodings to tolerate

Categorical duplicates, thereby diminishing the utility of category

deduplication task. We also expose a critical shortcoming of One-
hot and String encoding [70], when Categorical duplicates arising
in the deployment (or inference) but not during training can affect

ML performance significantly.

Some of these insights may be considered folklore by practition-

ers, but this work is the first in-depth systematic scientific study to

assess the impact of Categorical duplicates on ML. We explain the

impact from the bias-variance tradeoff perspective to put empirical

results on a rigorous footing. Our analyses can benefit practitioners

to systematically understand the various confounders that matter

for accuracy. Also, this can be useful to develop better practices

and design ML workflows that are robust to Categorical duplicates.
Moreover, our work opens up new research directions at the inter-

section of ML theory, data management, and ML system design.

Overall, our work is novel in terms of new labeled dataset, bench-

mark, and novel empirical analyses. We make four contributions:

1. A new benchmark dataset. To the best of our knowledge,

this is the first work to curate a large labeled dataset specifically

for Categorical duplicates where the entities are annotated.

We present several insights that characterizes how Categorical
duplicates exhibit themselves.

2. Empirical benchmarking to understand the significance
of category deduplication on ML. Our curated downstream

benchmark containing “in-the-wild” datasets enables us to

point out cases where the task may or may not benefit ML.

3. Characterization of confounders with simulation study.
Our study can disentangle and explain the impact of con-

founders on how Categorical duplicates affect ML.

4. Utility of our work. We present the first in-depth scientific

empirical study to systematically charactertize when and why

category deduplication can help/not help ML. We present sev-

eral practical insights for practitioners. We identify open ques-

tions for further research where our labeled data can be a key

enabler to address them. Also, we open source our benchmark

to enable more community-driven contributions [2].

2 RELATEDWORK
2.1 Entity Matching (EM) and String Matching

(SM) Approaches
EM, the task of identifying whether records from two tables re-

fer to the same real-world entity has received much attention

with rule-based [67, 75, 76], learning-based [55, 60, 64, 82], semi-

supervised [54], unsupervised [44, 80], and active-learning [63]

approaches. They operate at a tuple-level since they have access to

the entire feature vectors of the two tables. Note that tuple-level du-

plicates do not necessarily imply duplication in Categorical strings,
and also vice versa. Thus, the problem of EM is orthogonal to cat-

egory deduplication. Admittedly, it is possible to view category

deduplication as an extension of row-level deduplication but doing

so is non-trivial. Regardless, our focus is to study only the impact
of category deduplication on ML and not how to perform deduplica-
tion or compare deduplication methods. Thus, prior work on EM is

complementary to ours in terms of utility for AutoML platforms.

SM, finding strings from two sets that refer to the same real-

world entity has been explored with an active learning solution

Smurf [37] and an unsupervised learning approach [58]. However,

such SM approaches are orthogonal to our focus on studying how

Categorical duplicates affect ML. We leave automating category

deduplication to future work, including potentially extending exist-

ing row-level deduplication and SM works.

2.2 Existing Labeled Datasets
Many works have introduced labeled data for related tasks such as

EM [42, 43, 55], SM [37, 42, 58], and resolving column-level incon-

sistencies [59]. Table 2 gives examples of pairs of duplicates from

three different datasets in Magellan Data Repository [42], which is

used in several prior works [37, 43, 48, 55]. Open domain attributes

such as person names and addresses are not Categorical features for
ML. Instead, such features are context-specific where either custom

features are extracted or are completely dropped as they may not

generalize for ML. Note that Categorical feature assumes mutually

exclusive values from a known finite domain. Moreover, Title in
Citations has rich semantic information and is typically used as

a Text type feature. We find that a large fraction of the datasets

used in prior works involve duplication in non-Categorical features.
Thus, they are not relevant for us to study category deduplication.

Although incidental Categorical duplicates do arise in a few datasets

Table 2: Examples of labeled duplicates from Magellan Data
Reposity [42] with dataset and column names.

A.
Restaurants

Address Phone number Name
1929 Hillhurst Ave,

Los Angeles, CA (323) 644-0100 Alcove Cafe
& Bakery

1929 Hillhurst Ave,
 Los Angeles, CA 90027 (323) 644-0100 Alcove Cafe

& Bakery

B.
Citations

Author Entry Type Title
David A. Cohn and
Michael I. Jordan article Active Learning with

Statistical Models
Cohn, David A

and Jordan, Michael I article Active learning with
statistical models

Name

XC.
Researchers

alicia n aarnio
alicia nicole aarnio

in [37, 59], we posit that we need a systematic benchmark to charac-

terize and understand their impact on ML accuracy that prior works

do not focus on. We focus exclusively on the Categorical features
and curate the first large labeled dataset of entities annotated with

duplicates within a Categorical column.

2.3 Data Cleaning and Data Prep for ML
CleanML [59] analyses the impact of many data cleaning steps on

ML. Our work is along the same direction, but they do not specifi-

cally explore Categorical deduplication and its causal confounders

that matter for accuracy. Although they do study string-level in-

consistencies within a column with four real datasets, they are not

all Categorical. Also, they focus on deriving a broad perspective

and a coarse-grained study of many cleaning steps such as this. In

contrast, we dive deep into Categorical deduplication. We study its

causal confounders that matter for accuracy to offer empirical rigor

and understand the importance of task scientifically.

We performed an objective benchmarking of a specific ML data

prep step, namely the feature type inference task [72]. We build

upon our open-sourced datasets but we study a completely differ-

ent problem. There exist numerous data prep tools such as rule-

based [52], exploratory data analysis-based [69], program synthe-

sis [50, 53], and visual interfaces [12] to reduce manual grunt work

effort and allow users to productively prepare their data for ML. Our

work’s insights can complement all these tools to reduce human

time and effort and make their analysis more interpretable. Some

works have studied human-in-the-loop cleaning to improve ML ac-

curacy and reduce user effort [56, 57]. However, they do not support

a cleaning operation with Categorical duplicates. Our labeled data

can spur more follow-up works in this general direction of automat-

ing and improving data prep for ML. Error detection [40], ML for

data cleaning methods [71, 78], and even techniques that perform

value standardization [35] are orthogonal to our focus since we do

not propose new techniques for Categorical deduplication.

2.4 AutoML Platforms
Several AutoML tools such as AutoML Tables [5], Transmogri-

fAI [11], and AutoGluon [45] performing automated model selec-

tion do automate many data prep tasks. However, they do not explic-

itly handle Categorical duplicates. Instead, the users are asked to ex-
plicitly clean and remove inconsistencies in Categorical columns be-

fore using their platform [4]. Our labeled data can lead to contribu-

tions from community to automate deduplication with a supervised

Duplication properties

ML accuracy

Feature Vector from
Categorical Encoding

Data
Regime

Column
Relevancy

Hypothesis Space
of ML Model

Figure 1: Summarization of confounders impacting ML in
the context of Categorical column that has duplicates.

learning-based approach, including potentially extending AutoML

with deduplication processor in the optimization process [46, 65, 66].

Moreover, we believe that our empirical analyses and takeaways

provide valuable insights to improve AutoML platforms.

3 OUR APPROACH

Consider again an ML practitioner predicting Customer Churn

with Table 1 data. She sources the data from multiple tables such

as Customers and Zipcode, which contains details about the area

where the customers live. She expects likely duplicates in many

Categorical columns such as Gender, State, Title, and Contract since
they are collected using “Free Text” customer surveys. She wants to

build and periodically retrain ML pipelines such that they are most

robust to likely duplicates. She prefers an ML pipeline which is not

necessarily the most accurate but the one that is most reliable. She

wants to minimize any adverse impact from Categorical duplicates.
To build such an ML pipeline, she wants to choose from different

Categorical encoding schemes and ML models that are popular

on tabular data [77]. Moreover, she has an intuition that many

Categoricals such as MostCommonCrime_Zipcode are not relevant
for the target and cleaning them may not be in the best interest of

her time. She would like to prioritize her efforts towards cleaning

Categoricals that are more likely to impact ML. In addition, she has

the resources to collect even more training data on customers, but

doesn’t know if more training data would necessarily translate to a

more robust pipeline. Overall, she is fraught with several questions:

How do Categorical duplicates impact the behavior of popular ML
classifiers and encodings?Would the effort towards cleaning duplicates
be less worthwhile for a non-relevant column as opposed to a column
that is relevant for the task? Would collecting more training data help
in mitigating the impact of Categorical duplicates?

Towards answering these questions, we take a step towards em-

pirically assessing the significance of category deduplication on

ML. We first identify the important confounders that matter for

ML practitioners and study how they affect ML. We hand label

a large dataset of real-world Categorical columns with duplicates

to understand how they occur. We then make empirical observa-

tions of the impact of deduplication with different confounders in

the real-world. We finally use synthetic study to validate observed

phenomenon and intricately study how each confounder impact

ML. We first summarize the confounders we study and then ex-

plain our three-part contributions towards building an in-depth

understanding of the importance of category deduplication for ML.

We focus this study in the context of a Categorical column that

has duplicates. As the domain size of column shrinks with dedupli-

cation, it can influence the following confounders impacting ML

(as Figure 1 shows): (1) Feature vector from Categorical encoding.

(2) Hypothesis space denoting a set of all prediction functions from

feature space to label space that the ML model can represent. (3)

Data regime in terms of the number of training examples per unique

category in the column. (4) Column relevancy as a measure of the

importance of column for the downstream task. Admittedly, there

can exist other complex confounders such as skew in class labels

with different distributions and conditional duplication properties

given the class label. However, in this work, we focus on the above

confounders because of their importance for ML practitioners. We

leave studying the other confounders to future work.

1. Our Hand-Labeled Data. We create the first large labeled data

where true entities within a Categorical column are annotated with

duplicate categories. This helps us understand the observed prop-

erties of Categorical duplicates and how they manifest themselves

in real-world columns. Our data includes 1262 string Categorical
columns from 231 raw CSV files. The labeling process took us

about 150 man-hours across 6 months. The utility of our labeled

data is two-fold. (1) Configure duplication parameter ranges and

skew distributions in simulation study. (2) Presents a crucial artifact

for researchers to automate the task of Categorical deduplication
itself and even to objectively evaluate the accuracy of in-house

automated mechanisms by AutoML platform developers. In fact,

one such labeled data for ML feature type inference task lead to

objective benchmarking of existing AutoML tools and even lead to

more accurate supervised ML approaches to automate the task [72].

We dive into this part in Section 5.

2. Downstream Benchmark Suite.We use 14 real-world datasets

to empirically study the impact of Categorical duplicates. We choose

these datasets such that they capture different kinds of duplication

and also represents the different regimes in the confounder spec-

trum (explained in Section 6.2). We choose three popular ML classi-

fiers from the spectrum of bias-variance tradeoff to showcase both

high-bias and high-variance scenarios. We choose four Categorical
encoding schemes to showcase how different ways of encoding the

feature space impact the behavior of duplicates on ML. We leave

in-depth discussion of this component in Section 6.

3. Synthetic Study.We perform a Monte Carlo-style simulation

study to achieve two objectives. (1) Confirm the validity of the

observations we make with downstream benchmark suite. (2) Dis-

entangle and characterize the effect of duplicates with multiple

confounders individually to make the impact interpretable. We

embed a true distribution and vary the confounders one at a time

while fixing the rest to study their impact on ML accuracy along

with how they trend. Although we use hand-labeled data to inform

duplication parameter values, our simulation study is not entirely

dependent on it. One can very well fix arbitrary duplication parame-

ter values, although that doesn’t change the trends and conclusions

that we derive. Section 7 explains this in depth.

4 PRELIMINARIES
4.1 Assumptions and Scope
We focus on the ML classification setting over tabular data. We

call the ML model to be trained over the data as the “downstream

model.” Note that our goal is not to study the upstream dedupli-

cation process itself, which is handled manually in the paper. We

Table 3: Notations used in this paper with a simplified exam-
ple to illustrate our notions with State column categories.

Symbol Meaning
C Set of category values in the column 𝐴!
E Set of unique real-world entities referred by categories from C
ED Subset of real-world entities that have at least 1 duplicate; ED ⊆ 𝐸

occ(Z) Sum of occurrences of all categories present in set Z; Z ⊆ C
D Set of non-empty sets of duplicate values for each entity in ED; |D|	=	|ED|

Category set Ci

(𝟏 ≤ 𝒊 ≤ |C|)
Occurrence of

Category (occ({Ci}))
Entity set Ej

(𝟏 ≤ 𝒋 ≤ |E|)
New York C1 60

New York E1NY C2 30
new york C3 10
California C4 70 California E2Ca C5 30
Wisconsin C6 100 Wisconsin E3

leave designing automated upstream deduplication mechanisms to

future work. We focus on understanding how duplicates manifest

themselves in real-world and how they impact the performance of

the downstream models. Specifically, we study them in the context

of string nominal Categorical features, which do not have a notion

of ordering among its values. Note that a Categorical feature con-
tains mutually exclusive values from a known finite domain set. In

contrast, Text type features can take arbitrary string values. Thus,

generic open domain addresses or person names are not Categorical.
We study duplicates arising in Categorical column, which is not the

actual target for the prediction task.

4.2 Definitions
We present terms and notations needed to study the effect of Cate-
gorical duplicates in the context of implications forML accuracy.We

first draw upon notations from a mix of both database theory [62]

and ML literature [49] for known concepts. A relational table is de-

fined by schema 𝑅(𝐴1, 𝐴2, ..., 𝐴𝑛, 𝑌) with a relation (instance) 𝑟 .We

useA to denote a set of columns {𝐴1, 𝐴2, ..., 𝐴𝑛} and𝑌 is the target

column for prediction. Note that, formally, a column is referred to

as an attribute [62]. Let 𝐴𝑙 (𝑙 ∈ [1, 𝑛]) be a Categorical column with

a domain 𝑑𝑜𝑚(𝐴𝑙) ⊆ L, where L is the set of strings with finite

length. A relation 𝑟 is defined over A as a set of mappings with

{𝑡𝑝 : A → ⋃𝑛
𝑙=1

𝑑𝑜𝑚(𝐴𝑙), 𝑝 = 1...|𝑟 |}, where for each tuple 𝑡𝑝 ∈ 𝑟 ,

𝑡𝑝 (𝐴𝑙) ∈ 𝑑𝑜𝑚(𝐴𝑙), |𝑟 | is the number of examples in the the table.

Note that Categorical strings are not directly consumable bymost

ML models. Thus, an encoding scheme is required to transform A
to a feature vector to train an ML model. We explain this further in

Section 6.1. We now reuse and adapt terminologies from existing

database [39, 62] and ML literature [49] together for terms that we

need for the rest of the paper. Table 3 lists the notations and explains

the terms used with an example. For simplicity of exposition, we

focus on one Categorical column with duplicates, 𝐴𝑙 ∈ A.

Definition (Category). A Category set𝐶𝑙
= {𝐶𝑙

1
,𝐶𝑙

2
, ...,𝐶𝑙

|𝐶𝑙 | } con-
tains all unique domain values occurring in the column𝐴𝑙 . Note that

𝐶𝑙
is also referred to as the active domain of 𝐴𝑙 relative to relation

𝑟 [62], i.e., 𝐶𝑙
=𝑎𝑑𝑜𝑚(𝐴𝑙 , 𝑟)={𝑐 ∈ 𝑑𝑜𝑚(𝐴𝑙) | ∃𝑡𝑝 ∈ 𝑟, 𝑡𝑝 (𝐴𝑙) = 𝑐}.

We drop the superscript (𝐶𝑙
) and simplify the active domain opera-

tion with 𝐶 only to make it succinct for follow up set algebra. Each

distinct value in the column is defined as “category.” For Table 3

example, 𝐶 = {New York, NY, new york, California, Ca, Wisconsin}.

Definition (Entity). An Entity set 𝐸 ⊆ 𝐶 represents a subset of

Categories that conceptually refer to different real-world objects. A

category from set 𝐶 can be uniquely mapped to an entity from set

𝐸. Let the mapping function be denoted by𝑀 : 𝐶 → 𝐸. In Table 3,

there are three unique real-world state objects, i.e., 𝐸 = {New York,
California, Wisconsin}. Note that entities are defined at a conceptual
level; thus, referring to New York as new York or NY is identical. But

for ease of exposition, we assume the category that most frequently

represents an entity (ties broken lexicographically) in the column

to be the true entity. There exist multiple categories representing

the same entity, i.e.,𝑀 (𝐶1)=𝑀 (𝐶2)=𝑀 (𝐶3)=𝐸1={New York}.
Definition (Occurrence). We define Occurrence (or percentage

Occurrence) of category 𝐶𝑖 as percentage of times 𝐶𝑖 represents 𝐸 𝑗
in the column. For instance, whenever real-world New York entity

occurs, 30% and 10% of the times NY and new york represents them

respectively. New York is referred to as the entity since it occurs

more than NY and new york. We define the Occurrence function
as 𝑜𝑐𝑐 : 𝑍 → [0, 100]. The input 𝑍 is a subset 𝑍 ⊆ 𝐶 such that all

categories of the subset map to a unique entity 𝐸 𝑗 (𝑗 ∈ [1, |𝐸 |]), i.e.,
𝐸 𝑗 = 𝑀 (𝑍1)=𝑀 (𝑍2)=...=𝑀 (𝑍 |𝑍 |). The output is the sum of occur-

rence values for all categories present in the input set which is a real

number in [0, 100].𝑜𝑐𝑐 (𝑍) = 𝑜𝑐𝑐 (𝑍1)+...+𝑜𝑐𝑐 (𝑍 |𝑍 |), e.g.,𝑜𝑐𝑐 ({𝐶1})
= 60, 𝑜𝑐𝑐 ({𝐶2,𝐶3}) = 40, and 𝑜𝑐𝑐 ({𝐶1,𝐶4}) = Undefined.

Definition (Duplicate). There exist a duplicate for 𝐸 𝑗 whenever

𝐸 𝑗=𝑀 (𝑍1)=𝑀 (𝑍2)=...=𝑀 (𝑍 |𝑍 |), |𝑍 |>1. Whenever 𝐸 𝑗 occurs, the %

times it is represented by 𝑍1, 𝑍2, and 𝑍𝑛 are 𝑜𝑐𝑐 (𝑍1),𝑜𝑐𝑐 (𝑍2), and
𝑜𝑐𝑐 (𝑍𝑛) resp. Without loss of generality, we assume that 𝑜𝑐𝑐 (𝑍1)
>=𝑜𝑐𝑐 (𝑍2)>=...>=𝑜𝑐𝑐 (𝑍 |𝑍 |) . Since 𝑍1 most frequently represents

the entity (ties broken lexicographically), the other categories𝑍2, ...,

𝑍𝑛 are referred to as duplicates of the entity 𝐸 𝑗 . We define 𝐸𝐷 ⊆ 𝐸

as the subset of the entities that contain at least one duplicate, i.e.,

∃𝑍 ⊆ 𝐶 s.t. |𝑍 |>1 and𝑀 (𝑍1)=...=𝑀 (𝑍 |𝑍 |) = 𝐸𝐷 𝑗 (𝑗 ∈ [1, |𝐸𝐷 |]). We

define a duplicate set 𝐷𝑘 (𝑘 ∈ [1, |𝐸𝐷 |]) for every entity in 𝐸𝐷 such

that 𝐷𝑘={𝑍2, 𝑍3, ..., 𝑍 |𝑍 | } represents a set of duplicate values, e.g.,
𝐸𝐷1=California, 𝐷1={Ca} and 𝐸𝐷2= New York, 𝐷2={new york, NY}.

Definition (Category Deduplication). This is the task of map-

ping categories from 𝐶 to an entity from 𝐸 with mapping function

𝑀. The new column after the assignment is called the deduplicated
column. Set 𝐶 and 𝐸 of the deduplicated column are identical.

Definition (Column Relevancy). Let Acc(A) be the % classifica-

tion accuracy obtained by the ML model with a set of columns A
to be used as features in the input. Relevancy of a column 𝐴𝑙 ∈ A
is defined as𝐴𝑐𝑐 (A) −𝐴𝑐𝑐 (A − {𝐴𝑙 }). This quantifies the absolute
predictive power of column 𝐴𝑙 for the downstream task.

5 OUR HAND-LABELED DATASET
We create a labeled dataset of Categorical columns where Entities

in each column is annotated with their duplicates whenever present.

This enables us to understand how real-world duplicates manifest

themselves and what do the sets 𝐸, 𝐸𝐷, 𝐷 and their occurrences

look like. We now discuss how this dataset is created, the types of

real-world duplicates present, and our dataset analysis with stats

and important insights into the behavior of duplicates.

Table 4: Duplication types w/ examples from our labeled data
Duplication Types Column name Category Examples

1 Capitalization Country “United States” , “united States”
2 Misspellings Gender “Male” , “Mail” , “Make” , “msle”

3 Abbreviation State “California” , “CA”
preparer_title “Senior Counsel” , “Sr. Counsel”

4 Difference of
Special Characters

City “New York” , “ New York, ”
Colour “Black/Blue” , “Black-Blue”

5 Different Ordering Colour “GoldWhite“ , “WhiteGold”

6 Synonyms Gender “Female” , “Woman”
Venue “Festival Theatre”, “Festival Theater”

7 Presence of
Extra Information City “Houston” , “Houston TX” ,

“Houston TX 77055”

8 Different grammar Colour “triColor” , “tricolored”
Venue ”Auditorium” , “TheAuditorium”

5.1 Data Sources
We constructed a large real-world dataset of 9921 columns from

1240 data files with diverse application domains such as retail,

healthcare, finance, etc., and they were sourced from Kaggle and

UCI ML repository [72]. Columns were manually annotated with a

standardized 9-class vocabulary of ML feature types. The classes

include feature types such as Numeric, Categorical, Datetime, Sen-
tence, and Not-Generalizable (e.g., primary keys). Using this, we

obtain just the string Categorical columns. In addition, we collect

more such columns and data files using open-source data portals

from Chicago city [17], New York [20] and California state [13],

Pittsburgh health [15], mental illness project data portal [27], and

also real data surveys from FiveThirtyEight [24], and EveryDay-

Data [22]. Note that we use 14 data files exclusively from these

sources for empirical benchmarking on real downstream tasks in

Section 6. Overall, we find 231 raw CSV files with at least one string

Categorical column. We find a total of 1262 such columns.

Current Limitation.We sourced the Categorical columns by lever-

aging our previous dataset [72]. The raw files were collected from

sources such as Kaggle and UCI ML repo where the data file may

have been subjected to some pre-processing. However, this is the

best we can do from academic research standpoint given legal con-

straints: acquire large public datasets using public APIs, annotate

them, and make them available to the community. It is hard to

acquire truly raw data files from several enterprises and make them

public due to legal constraints. Also, we do not make any general

claims about the manifestation of duplicates across the universe of

the datasets. This would require doing a comprehensive analysis of

datasets from all sources including that from enterprises and other

organizations. However, this does not diminish the utility of our

empirical analyses as both the downstream benchmark suite and

our synthetic study are independently useful.

5.2 Labeling Process
Among the Categorical columns we collected, we do not know

which columns contain duplicates beforehand. This necessitates us

to manually scan through all the 1262 Categorical columns and look

for duplicates in them. We follow the below process at a column-

level to reduce the cognitive load of labeling. For every Categorical
column, we enumerate its category set with the count of times each

category appears in it. Before scanning the category set, we sort

(1−|E|/|C|)	 %

(A)

(|ED|/	|E|)	%

(B)

𝑜𝑐𝑐({𝐷!"})

(C)

|𝐷!	|

(D)

Figure 2: Cumulative distribution function (CDF) over all Categorical columns with at least one duplicate on (A) % entities that
have at least one duplicate. (B) Duplicate set sizes over all 𝑘 ∈ [1, |𝐸𝐷 |]. The maximum duplicate set size is 148. (C) Duplicate set
occurrences over all 𝑘 ∈ [1, |𝐸𝐷 |], 𝑖 ∈ [1, |𝐷𝑘 |]. (D) % reduction in domain size with category deduplication.

the categories by their appearance count in descending order and

their values in lexicographic order. This helps up catch the true

entities early on in the file. Recall that we call the category that most

frequently represents a real-world object the true entity. As we scan

the category set, we annotate duplicates with their corresponding

entities in the column. We construct 𝐸, 𝐸𝐷, and 𝐷 sets, along with

their occurrences for all the columns. The entire labeling process
took us roughly 150 man-hours across 6 months and 3 people.

5.3 Types of Duplicates and Data Statistics
We find that there exist 𝑒𝑖𝑔ℎ𝑡 types of duplication. We present

these types with examples in Table 4. The differences shown are rel-

ative to the representation of the true entity. We now clarify some

of the types. Type 4 denotes the difference of any non-alphanumeric

special characters including comma, period, and white spaces. Type
5 denotes different ordering within multi-valued categories. Type
8 categories have either a common stem/lemma, presence of stop-

words, or a common singular representation. Note that a duplicate

can have duplication of multiple types and an entity can have nu-

merous duplicates, each belonging to multiple types, e.g., given

𝐸𝐷1= New York and 𝐷1 = {new-york., NY}, “new-york.” has both
Type 1 and 4 duplication, and the entity New York has duplicates

with duplication of Type 1, 3, and 4.
We annotated 67060 entities across all 1262 string Categorical

columns. We find that almost 5% of those entities have the presence

of at least one duplicate with a total of 5584 duplicates. Overall, 66

columns from 47 raw CSV files have the presence of at least one

duplicate. There are three parameters that quantify the amount of

duplication within a column. (1) Fraction of entities that have at

least one duplicate (|𝐸𝐷 |/|𝐸 |). (2) Duplicate set size for all entities
of the column (set 𝐷). (3) Duplicate occurrences 𝑜𝑐𝑐 ({𝐷𝑘𝑖 }), 𝑘 ∈
[1, |𝐸𝐷 |], 𝑖 ∈ [1, |𝐷 |]. Figure 2 plots the CDF of different parameters

that characterizes duplication over our labeled data.

We now briefly summarize the presented results. We find that

whenever duplicates arise in the column, they can occur quite often.

Almost 19% of columns that have duplicates have them in all of

their entities! Also, whenever an entity is diluted with duplicates,

almost 90% of the time they have one or two duplicates! Duplicate

set sizes follow a long-tail distribution, most entities have small

duplicate set sizes and very few entities have a lot of duplicates. This

can make catching duplicates and deduplicating them particularly

challenging, as they can go unnoticed. Moreover, the occurrence

of duplicates approximately follows a uniform distribution, i.e., all

occurrence values up to 50% are roughly equally likely. We present

stats on duplication types with takeaways in technical report [73].

6 DOWNSTREAM BENCHMARK
We now empirically study the impact of category duplicates on

the downstreamML tasks. Note that our focus is not to compare and

evaluate category deduplication methods. We curate a benchmark

suite of 14 real-world datasets, each containing a column with

duplicates. We use this to empirically evaluate and compare three

Categorical encoding schemes both with and without the presence

of duplicates. Finally, we make several important observations on

the different confounders that impact the relationship of Categorical
duplicates with downstream classifiers.

6.1 Models and Encodings
We choose three popular classifiers used commonly among the

ML practitioners as per Kaggle data science survey [77]: Logistic Re-

gression (LR), Random Forest (RF), and an artificial neural network

(ANN). These models also present representative choices from the

bias-variance tradeoff spectrum [49]: high bias and low variance ap-

proach with LR and low bias and high variance approaches with RF
and ANN. LR has a low-capacity, while RF has high-capcity and infi-

nite VC dimension as it can represent any function on the data [74].

We use ANN architecture with 2 hidden units, each with 100 neu-

rons. Although there is no magic number for ANN architecture size,

the above network already offers a very large VC-dimension and

a high-capacity [36]. We use the synthetic study (Section 7) with

two extremes in the ANN’s bias spectrum to empirically assess the

different capacities of ANN on downstream ML.

We encode Categorical columns with four popular schemes:

One-hot (OHE), String (StrE) [70], Similarity (SimE) [38], and a

pre-trained Transformer-based embeddings (TransformerE) [61].
OHE is the standard approach to encode nominal Categoricals as it
follows their two properties. (1) Each category is orthogonal to one

another. (2) Pairwise distance between any two categories is identi-

cal. With a category set𝐶𝑙
(for𝐴𝑙) closed during training, OHE sets

feature vector 𝑋
𝑝

𝑙
=[1(t𝑝 (𝐴𝑙)=𝐶𝑙

1
), ..., 1(𝑡𝑝 (𝐴𝑙)=𝐶𝑙

|𝐶𝑙 |)], where 1(.)
is the indicator function and 𝑝=1..|𝑟 |. RF with OHE performs binary

splits on the data. RF can also handle raw “stringified” Categorical
values by performing set-based splits on the data. We refer to this as

StrE. Note that StrE is not applicable for LR, since it cannot handle
raw string values. Both OHE and StrE assume that the Categorical
domain is closed with ML inference, i.e., new categories in the test

not seen during training are handled by mapping them to a special

category, “Others.” SimE takes into account the morphological vari-

ations between the categories. The feature vector for category set

𝐶𝑙
is given as 𝑋

𝑝

𝑙
=[𝑆𝑖𝑚(𝑡𝑝 (𝐴𝑙),𝐶𝑙

1
), ..., 𝑆𝑖𝑚(𝑡𝑝 (𝐴𝑙),𝐶𝑙

|𝐶 |)], where

Table 5: Statistics of the column containing Categorical duplicates in our 14 downstream datasets. |𝑟 |, |A|, and |𝑌 | are the total
number of examples, columns, and target classes in the data resp. Duplication types numbering correspond to Table 4. |𝑟𝐶 |
denotes the number of training examples per category of the set𝐶. We use colors green, blue, red with hand-picked thresholds to
visually present and better interpret the cases where the amount of duplication is low (1 − |𝐸 |/|𝐶 | < 0.25), moderate (1 − |𝐸 |/|𝐶 | >
0.25 & < 0.50), and high (1 − |𝐸 |/|𝐶 | > 0.50) resp. We use the following thresholds with the same colors to better interpret the
data regime: low (|𝑟𝐶 | < 5), moderate (|𝑟𝐶 | > 5 & < 25), and high (|𝑟𝐶 | > 25). Note that the data regime moves up with category
deduplication as category set size has shrunk. We present more fine-grained statistics for the datasets in the tech report [73].

Datasets |r| |A| |𝒀|
Duplication Types Amount of Duplication Data Regime

1 2 3 4 5 6 7 8 𝑬𝑫 	
|𝑬| % |C| 1- |𝑬||𝑪| % Raw

|rC|
Truth
|rC|

Midwest Survey 2778 29 9 X X X X X X X 33 1008 64 2.5 6.5

Mental Health 1260 27 5 X X X X X 40 49 69 23.2 81.2

Relocated Vehicles 3263 20 4 X X X X X 33 1097 36 2.5 3.8

Health Sciences 238 101 4 X X X 36 56 61 3.6 8.3

Salaries 1655 18 8 X X X 24 647 29 1.8 2.2

TSM Habitat 2823 48 19 X X X X 11 912 11 2.6 2.9

EU IT 1253 23 5 X X X X X X 24 256 35 3.9 5.9

Halloween 292 55 6 X X X X 31 163 51 1.5 3

Utility 4574 13 95 X X X 38 199 31 16.2 24.3

Mid or Feed 1006 78 5 X X X X 21 37 62 20.6 59.7

Wifi 98 9 2 X X X 30 69 52 1.3 2.5

Etailing 439 44 5 X X X X X 47 71 68 5.3 14.3

San Francisco 148654 13 2 X X 11 2159 10 46.3 50.9

Building Violations 22012 17 6 X X X 51 270 63 53.7 145

𝑆𝑖𝑚(.) is a similarity metric defined as the dice-coefficient over

𝑛-gram (𝑛 ranges from 2 to 4) strings [34]. TransformerE uses a

pre-trained BERT base transformer model to obtain embeddings

as features [61]. The feature vector can be computed even for any

new categories arising in test set which are unseen during training

for both TransformerE and SimE.

6.2 Datasets used for Analyses
We choose 14 datasets from Section 5.1 such that we not only

represent the different duplication types but also span the spectrum

of different confounder combinations. Table 5 presents the statis-

tics over our datasets. We use the quantity % reduction in domain

size with deduplication (1-|𝐸 |/|𝐶 |) to summarize the magnitude of

duplication. We use the data regime notion to denote the number of

training examples per category value of the column with duplicates

(|𝑟𝐶 |). We ensure that our selected datasets sufficiently represent

different ranges of values (high vs. low measured relatively) in both

confounder spectrum. For instance, a dataset that involves a high

amount of duplication coupled with high- and low-data regimes

such as Building Violation andMidwest Survey respectively. We will

later see in Section 6.4 that the former dataset is robust to dupli-

cates even with almost 51% of their column’s entity diluted with

duplicates, while the latter is not. This enables us to make specific

observations on the role of different confounders, which we validate

and disentangle using our simulation study in the Section 7.

Specifically, we obtain the following data files:Midwest Survey[25],

Wifi[32], Mental Health[28], EU IT[30], Relocated Vehicles[19], Util-

ity [21], Health Sciences[16], Salaries[23], TSM Habitat[14], Build-

ing Violations [18], Etailing[33], Mid or Feed[31], Halloween[26],

and San Francisco[29]. Each dataset has a column with Categorical
duplicates which we manually deduplicated in Section 5.2. We do

not claim that these 14 datasets are representative of the percent-

age one can encounter in practice. Our goal with the downstream

benchmark is not to make universal claims about the impact of

Categorical duplicates on just the commonly encountered datasets.

Instead, we select them plainly to showcase different confounder

settings and study the behavior of duplicates in those settings. The

benchmark suite helps us point out the cases where deduplication

matters. This coupled with synthetic study only serves as a guide

that can help ML practitioners and AutoML platform developers

glean insights. We hope our work inspires more data benchmark

standardization in this space with industry involvement.

6.3 Methodology
We partition each dataset into an 80:20 split of train and test. We

perform 5-fold cross-validation and use a fourth of the examples in

the train set for hyper-parameter search. We use scikit-learn[68],

H2o[7], SimilarityEncoder[10], and FlairNLP[1] packages to employ

OHE, StrE, SimE, and TransformerE resp. We tune the regularization

parameter for LR. We tune the number of trees and their maximum

depth for RF with values for each ranging from 5 to 100. ANN is

L2 regularized and tuned. Due to space constraints, we present the

entire grids for hyper-parameter tuning in technical report [73].

6.4 Results
6.4.1 Results comparing the ML impact with and without
Categorical duplicates. Table 6 shows the comparison of down-

stream ML models built with different encoding schemes in terms

Table 6: Classification accuracy comparison of ML models with different Categorical encodings on Raw (column has Categorical
duplicates intact) vs. Truth (column has been deduplicated with truth). Accuracy results for Truth are shown relative to Raw as
delta lift/drop in % accuracy. Green, blue, and red colors denote cases where the Truth accuracy relative to Raw is significantly
higher, comparable, and significantly lower (error tolerance of 1%) respectively. TRel denotes the true Relevancy of the column
that has been deduplicated.

Dataset

Random Forest ANN Logistic Regression

OHE StrE SimE OHE SimE TransformerE OHE SimE

TRel Raw Truth Raw Truth Raw Truth Raw Truth Raw Truth Raw Truth Raw Truth Raw Truth

Midwest Survey 16.1 49.1 +11.5 59.2 +10 64.9 +4.4 54.7 +9.5 63.4 +3.8 56.8 +8.5 57.2 +9.4 66.7 +2.1

Mental Health 1.3 47.9 +1.1 47.8 -0.1 47.4 -1.7 42.4 +2 43.2 -0.4 45.1 -0.7 46.9 +1.3 46.3 +0.6

Relocated Vehicles 9.1 72.5 +3 81.3 +4.1 88.3 -0.1 83.6 +3.6 89.6 +0 77 +1.6 82.9 +4 88.4 +0.4

Health Sciences 0.4 53.3 +2.2 61.8 +0 60 -2.7 55.1 +4.9 56.4 +1.8 57.3 +0.4 58.7 +0.9 60 +1.8

Salaries 0.7 64.7 +1.7 69.6 +1.3 94.6 +0.4 22 +0.5 19.9 +5.4 25 +3.8 30.4 +0.2 32.4 -1.3

TSM Habitat 5.2 71.2 +0.4 84.1 +1.4 71.2 +0.4 50.7 -2.7 50.7 -2.7 35.3 +0 50.7 +0 50.7 +0

EU IT 3.3 41.2 +1.2 43.6 -0.6 47.8 +4 13.4 -2.4 6.8 +5 9.9 +1.5 29.1 +0 29.1 +0

Halloween -0.4 40 +1.5 36.2 +1.5 34.7 -4.9 41.9 +4.2 43 +0.8 41.5 +0 42.6 +3.4 49.8 +1.1

Utility 8.1 58.8 +1.4 46.3 +1.2 43.2 +1.4 65.1 +2.3 73.2 +2.5 82.1 -0.2 42.4 -0.2 43 +0.3

Mid or Feed 1.5 40.2 +2.5 35.7 -0.2 36.2 +1.8 34 +2 32.7 +0.2 33.5 +0.1 40.5 +1.7 41.5 -1.2

Wifi 4.2 60 +5.3 57.9 +4.2 50.5 +3.2 52.6 +2.1 48.4 +3.2 61.1 -0.9 64.2 +1.1 58.9 +8.4

Etailing -0.5 40 +2 44.5 +1.1 38.2 +3 40.2 -3 37.2 +0 36.6 -0.7 41.1 -0.5 38.9 +1.8

San Francisco 24.4 83.4 +0.1 83.9 -0.3 86 +0 86 +0.1 86.1 -0.1 85.6 +0.2 86 -0.1 85.5 +0

Building Violations -0.1 97.5 -0.1 97.3 +0.1 97.6 +0 97.2 +0 97.4 +0 97.6 -0.6 91.6 +0 91.9 +0

Table 7: Summary statistics over 14 downstream datasets.

Models with
 Encoding Schemes

%accuracy lift w/ Truth vs Raw #datasets w/ >1% accuracy
 lift with Truth vs. RawMean Median Max

LR
OHE 1.5 0.6 9.4 6

SimE 1 0.4 8.4 5

RF

OHE 2.4 1.6 11.5 11

StrE 1.7 1.2 10 8

SimE 0.7 0.4 4.4 6

ANN

OHE 1.7 2 9.5 8

SimE 1.4 0.5 5.4 6

TransformerE 0.9 0.1 8.5 4

of diagonal accuracy. As an example, on Midwest Survey, RF with
OHE of Categoricals delivers a 9-class classification accuracy of

49.1% on the Raw dataset. Cleaning its duplicates (Truth) lead to an

11.5% lift in accuracy relative to the Raw. Table 7 shows summary

statistics of how different encodings perform with ML models and

also relative to one another on 14 datasets. Finally, we present the

generalization performance of classifiers with the overfitting gap

(difference between train and validation accuracies) in Table 8. We

summarize our results with important observations below.

O1. There exist several downstream cases where Truth improves the

ML accuracy over Raw for any encoding scheme. For instance, the

delta accuracy increase with Truth on RFwithOHE is of median 1.6%

and up to 11.5% compared to Raw (across 14 datasets). Moreover,

the delta accuracy increase is of median 2% and up to 9.5% for ANN.

O2. Delta increases in accuracies with Truth are typically higher

with RF and ANN than LR. The median delta increases in accuracy

with RF and ANN using OHE are 1.6 and 2, compared to 0.6 for LR.
Thus, LR is more robust to duplicates than the high-capacity models.

Table 8: Comparisons of overfitting gap with OHE. The drop
in overfitting gap for Truth is shown relative to the Raw.

Dataset
RF ANN LR

Raw Truth Raw Truth Raw Truth

Midwest Survey 50.7 -14.2 45.1 -10.4 24.4 -9.4

Mental Health 42.3 -7.2 26.7 -0.2 11.7 -3.5

Relocated Vehicles 27.3 -3.1 16.4 -3.6 17 -4.1

Health Sciences 35 -8.1 44.9 -4.9 9.3 -5.9

Salaries 34.6 -1 1.4 -0.5 1.9 +0.2
TSM Habitat 28 -0 0.1 +0.5 1.9 -0

EU IT 53.1 -6.6 1.4 +0.9 1.2 -0
Halloween 50.9 -5.8 58.1 -4.2 38.3 -3.5

Utility 41.2 -1.4 26.1 -3 0.7 -0.3
Mid or Feed 58.4 -1.1 66 -2 34.2 -12.8

Wifi 26.2 +1.3 47.4 -2.1 11.1 -2.1
Etailing 54.4 -1.6 59.7 +2.9 41.2 -7.7

San Francisco -0.2 -0 1.1 -0.1 0.5 -0
Building Violations 1.8 -0.1 1.1 -0.2 0.2 +0.1

O3. Truth helps RF using OHE the most, StrE the second most, and

SimE and TransformerE the least (see Table 7). Interestingly, the

median lifts in accuracies due to deduplication with SimE are just

0.4 and 0.5 on RF and ANN respectively. Overall, SimE improves the

ML performance with Truth in just ∼40% downstream cases. This

is because, SimE considers morphological variations between the

category strings and maps a duplicate to a similar feature vector as

the true entity. So, duplicates are often located close to their true

entities in the feature space. Thus, any further lift in accuracy due

to deduplication is marginal. Although, TransformerE is robust to

duplicates on most datasets, we find that it often fails to capture

misspellings and abbreviation kind duplicates, e.g., Salaries.

Table 9: Summary statitics comparing the ML impact with
Standardized vs. Raw and Standardized vs. Truth.

Stats over 14
Downstream

Datasets

Accuracy lift w/ Standardized vs. Raw Accuracy lift w/ Truth vs. Standardized

OHE
+ RF

OHE
+ ANN

OHE
+ LR

TransformerE
+ ANN

OHE
+ RF

OHE
+ ANN

OHE
+ LR

TransformerE
+ ANN

Median 0.3 0.1 0.1 0 1 1.8 1.1 0.7
Max 6.3 3.3 3.8 17 7.4 6.3 5.7 9

#dataset w/ >1%
 accuracy lift 3 4 3 6 7 9 8 6

O4. Deduplication reduces the overfitting gap for all models (from

Table 8), thereby improving their generalization ability. Since RF
and ANN are more prone to overfitting than LR, their accuracy lifts

with Truth are more significant.

O5. If the magnitude of overfitting gap on Raw is insignificant

(< 1%), the amount of possible reduction in overfitting with Truth is
also small. Thus, it’s not worthwhile to deduplicate if the overfitting

gap on Raw is already low to begin with. We observe this will all the

datasets where the overfitting gap is close to 1%, e.g., San Francisco
and Building Violations. We observe this across the three classifiers.

O6. Category deduplication increases the column Relevancy for all

models, i.e., the column becomes more predictive for the down-

stream tasks after category deduplication. Note that the magnitude

of accuracy lift with Truth quantifies the increase in column Rele-
vancy with Truth, as per definition in Section 4.2.

O7. The accuracy lifts with Truth on all the models are more sig-

nificant when the column has high Relevancy unless there exist

a high-data regime with a large number of training examples per

category. Thus, if a column has already high Relevancy on Raw, it
may be worthwhile conservatively to deduplicate, e.g., Relocated
Vehicles and Midwest Survey.

O8. High-data regime is robust to the impact of Categorical dupli-
cates than low-data regime, regardless of the amount of duplication.

Even a high amount of duplication has a negligible impact in the

high-data regime, e.g., Building Violations has a massive 63% reduc-

tion in domain size due to deduplication, but there exist a large

number of training examples per category. We do not see any lift

in accuracy with category deduplication on any of the ML models.

6.4.2 Results with additional evaluation metrics. We rerun

our downstream benchmark suite withmetrics such as macro/micro

average of precision, recall, and F1-score.We find that none of the
empirical conclusions made with diagonal accuracy change even with
these metrics. Thus, we defer their results and discussion to techical

report [73]. Beyond our observations, there exists a non-trivial

interaction of the confounders impacting ML. We disentangle and

study them separately in the next section.

6.4.3 Results when standardizing the Categorical column
that has duplicates. In this section, we explore if Categorical du-
plicates are trivial enough to simply disregard for the downstream

ML with a common standardization process. To consolidate a Cat-
egorical domain that has duplicates, we use a set of rules that are

commonly used to standardize strings with NLTK [9]: Lower-casing

strings, removing special chars, lemmatization to capture morpho-

logical variations, trimming excess white spaces, and removing

stopwords. We call the data we get as a result, Standardized and use

the same methodology as Section 6.3 to build ML models. Table 9

presents the comparison of ML accuracy with Standardized relative

to Raw and Truth using OHE and TransformerE. We find that the

median accuracy lifts with Standardized vs. Raw are marginal with

all the models. Moreover, the accuracy lifts with Truth relative to

Standardized are significantly higher for many datasets. Even with

embedding-based method like TransformerE on the standardized

column, the downstream ML accuracy suffer (compared to Truth)
significantly up to 9% on 6 datasets. Thus, accurately consolidating

duplicates would likely require either complex heuristics, more

custom processing, or even domain knowledge about the data.

Note that the discussion of how Categorical duplicates should be
handled is completely orthogonal to our focus. Although our goal

is not to explore Categorical deduplication approaches, here, we

simply present a setting where the problem can not be trivialized.

Regardless, this does not diminishes the utility of our work on

understanding how Categorical duplicates affect downstream ML.

7 IN-DEPTH SIMULATION STUDY
We now dive deeper into the impact of each confounder on

the downstream ML. This study helps us not only validate our

empirical observations but also makes the significance of each

confounder impacting ML more interpretable. Moreover, it reveals

the limitations of commonly used encoding schemes when unseen

duplicates during training arise in the test.

7.1 Models and Encodings
The structural model parameters such as the number of tree esti-

mators and maximum tree depth for RF and the specific ANN archi-

tecture can largely impact the bias-variance tradeoff. Thus, we fix

them to disentangle their impact and better illustrate our findings

by presenting two extremes of RF’s and ANN’s bias spectrum.We use

high-bias models such as shallow decision tree with a restricted tree

depth of 5 (denoted as ShallowDT), a low-capacity ANN comprising

of two hidden units with 5 neurons each (denoted as LoCapANN),
and also LR. In addition, we use low-bias high-capacity RF with the

number of tree estimators and maximum tree depth being fixed

to 50 (denoted as HiCapRF). These values represent the median

best-fit parameters obtained by performing a grid search (with the

grids being same as Section 6.3) over the synthetically generated

data described in Section 7.2. We again use a high-capacity ANN
comprising of two hidden units with 100 neurons each (HiCapANN).

We focus this study in the context of OHE and StrE. SimE and

TransformE require the categories to be semantically meaningful

strings. An entity can have duplication of multiple types. Construct-

ing a fine-grained simulator that generates semantically meaningful

duplicates while preserving the same true entity is non-trivial and

intricate from the language standpoint. We leave designing an apt

simulation mechanism for SimE and TransformE to future.

7.2 Setup and Data Synthesis

There is one relational table with 𝑌 being boolean. We include 3

Categorical columns in the table and set |A|=3. We set entity set

size of every column, |𝐸 |=10 (all columns have a domain size of 10).

Data generating process.We set up a “true” distribution 𝑃 (A, 𝑌)
and sample examples in an independently and identically distributed

Y-axis: Delta drop in % test accuracy due to duplication with OHE

Y-axis: Delta drop in % test accuracy due to duplication with StrE
training examples

(A)

% entities with duplicates

(B)

% occurrence of the duplicate

(C)

duplicates per entity

(D)

training examples

(A)

% entities with duplicates

(B)

% occurrence of the duplicate

(C)

duplicates per entity

(D)

Y-axis: Delta drop in % test
accuracy due to duplication
(only in test set) with OHE

% entities with duplicates

% occurrence of the duplicate

(E)

(F)

Figure 3: Simulation results for HiCapRF with OHE and StrE. (A-D) Duplicates are present in train, validation, and test set. (E-F)
Only test set is diluted with duplicates. (A) Vary |𝑟 |𝑡 (# training examples) while fixing (|𝐸𝐷 |/|𝐸 |, 𝑜𝑐𝑐 (𝐷𝑘), |𝐷𝑘 |)=(30, 25, 1) (B) Vary
|𝐸𝐷 |/|𝐸 | while fixing (|𝑟 |𝑡 , 𝑜𝑐𝑐 (𝐷𝑘), |𝐷𝑘 |)=(3000, 25, 1) (C) Vary 𝑜𝑐𝑐 (𝐷𝑘) while fixing (|𝑟 |𝑡 , |𝐸𝐷 |/|𝐸 |, |𝐷𝑘 |)=(3000, 30, 1) (D) Vary |𝐷𝑘 |
while fixing (|𝐸𝐷 |/|𝐸 |, |𝑟 |𝑡 , 𝑜𝑐𝑐 (𝐷𝑘))=(30, 3000, 25), for all 𝑘 ∈ [1, |𝐸𝐷 |]. Parameter settings of (E) & (F) are same as (B) & (C) resp.

manner. We study a complex joint distribution where all features

obtained from A determine 𝑌 . We sample |𝑟 | number of total ex-

amples, where the examples for training, validation, and test are in

60:20:20 ratio. We then introduce synthetic duplicates in one of the

columns of the table in different ways. We vary the six confounders

one at a time and study their impact on ML accuracy along with

how they trend as the parameter is varied.We generate 100 different

(clean) training datasets and 10 different dirty datasets for every

clean one. We measure the average test accuracy and the average

overfitting gap of all models obtained from these 1000 runs.

The exact sampling process is as follows. (1) Construct a condi-

tional probability table (CPT) with entries for all possible values of

A from 1 to |𝐸 |. We then assign 𝑃 (𝑌 = 0|A) to either 0 or 1 with a

random coin toss. (2) Construct |𝑟 | tuples of A by sampling values

uniform randomly from |𝐸 |. (3) We assign 𝑌 values to tuples of A
by looking up into their respective CPT entry. (4) We perform the

train, validation, and test split of this clean dataset and obtain the

binary classification accuracy of the ML models on the test split.

Duplication process.We introduce duplicates in a column𝐴𝑙 ∈ A
of the clean data as follows. (1) Fix fraction of entities to be diluted

with duplicates, e.g., |𝐸𝐷 |/|𝐸 |=0.3 (2) Form set 𝐸𝐷 (entities to be

diluted with duplicates) by sampling uniformly randomly |𝐸𝐷 | cat-
egories from 𝐸, e.g., 𝐸𝐷={𝐸3, 𝐸5, 𝐸8}. (3) For every entity in 𝐸𝐷 ,

fix duplicate set size |𝐷𝑘 |, 𝑘∈[1, |𝐸𝐷 |], e.g., |𝐷𝑘 |=1, 𝑘∈[1, 3]. We

assume that all entities have identical duplicate set sizes. We re-

lax this assumption in Section 7.3.5. (4) Given |𝐷𝑘 |, we form the

set 𝐷 by introducing duplicates, e.g., 𝐷1={𝐸3-𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒1}, 𝐷2={𝐸5-
𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒1}, 𝐷3={𝐸8-𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒1}. (5) Fix 𝑜𝑐𝑐 (𝐷𝑘), 𝑘∈[1, |𝐸𝐷 |]. For
every duplicate value 𝑑 in 𝐷 , set occurrence 𝑜𝑐𝑐 (𝑑)=𝑜𝑐𝑐 (𝐷𝑘)/|𝐷𝑘 |,
i.e., assume that all the duplicates representing an entity are equally

likely to occur. We relax this assumption in Section 7.3.5. (6) We per-

form the same train, validation, and test split of the resulting dataset

as obtained in step 4 of the data generating process. We finally ob-

tain the test accuracy of the ML models on the dirty dataset. We

use our labeled data to configure apt duplication parameter values

such that we can showcase an average and worst-case scenario.

7.3 Results
We vary all confounders one at a time while fixing the rest. We

confirm the trends and observations made with italics.

7.3.1 Varying the data regime. Figure 3 (A) presents the delta

drop in %accuracy with duplication relative to the ground truth

on HiCapRF as the number of training examples (|𝑟 |𝑡) are varied
with both OHE and StrE. We find that with the rise in |𝑟 |𝑡 , the
delta drop in accuracy decreases. With just 3 training examples

per CPT entry (|𝑟 |𝑡 = 3𝑘 and total entries in CPT=1𝑘), duplicates

cause a drop of median 2.3% and up to 4.3% accuracy with OHE.
With 10 training examples, the median and max drops in accuracies

due to duplicates with OHE are 0.3% and 0.7% respectively. This

confirms our observation on the downstream benchmark suite: A
higher data regime is more robust to duplication than a lower data
regime. The same trend holds with StrE encoding and also all the other
classifiers: LR, ShallowDT, LoCapANN and HiCapANN. Thus, a high-
data regime can tolerate duplicates by remaining more agnostic to the
model biases. Increasing the amount of duplication for a high data

regime (|𝑟 |𝑡=10𝑘) has a marginal impact on accuracy. Thus, even
high duplication has a marginal impact in the high-data regime. We

present the corresponding accuracy plots of the impact of duplicates

with data regime changes on the other classifiers in tech report [73].

7.3.2 Varying parameters controlling the amount of dupli-
cation. Figure 3 (B-D) shows how different duplication parameters

influence HiCapRF. We notice a clear trend: the drop in accuracy
with HiCapRF rises with the increase in any of the three duplication
controlling parameters, |𝐸𝐷 |/|𝐸 |, 𝑜𝑐𝑐 (𝐷𝑘), and |𝐷𝑘 |. Among the

Y-axis: Delta drop in % test accuracy due to duplication with OHE

(A) (B)

(C) (D)

X-axis: % entities with duplicates

Figure 4: Simulation results with OHE for (A) LR (B) ShallowDT (C) LoCapANN (D) HiCapANN with the same setup as Figure 3(B).

% Entities with duplicates
 on the non-relevant column

(A)

% Entities with duplicates
 on the relevant column

(B)

Y-axis: Delta drop in % test accuracy due to duplication with OHE

Figure 5: HiCapRF results. Vary |𝐸𝐷 |/|𝐸 |, while fixing
(|A|, |𝑟 |𝑡 , 𝑜𝑐𝑐 (𝐷𝑘), |𝐷𝑘 |)=(4, 5000, 25, 1). Duplicates introduced
on the column with (A) non-positive Relevancy (noisy col-
umn) (B) high Relevancy (predictive column).

three parameters, |𝐸𝐷 |/|𝐸 | has the most drastic effect on HiCapRF.
The effects of the increase in |𝐷𝑘 | are less pronounced because all

other parameters including 𝑜𝑐𝑐 (𝐷𝑘) are kept fixed. Thus, there exist
more duplicates for the same occurrence. Interestingly, we find from
Figure 3 that StrE is more robust to duplicates than OHE regardless of
the parameter being varied, as the delta drop in accuracy with StrE is
comparatively lower, although significant in high duplication cases.

Figure 4 presents how a key confounder (|𝐸𝐷 |/|𝐸 |) affects other
classifiers.We find that all high-bias models behave similarly as they

show a marginal drop in accuracy even when all entities are diluted

with duplicates. In contrast, HiCapANN exhibits similar behavior as

HiCapRF when |𝐸𝐷 |/|𝐸 | is increased. Note that the absolute accura-
cies of the high-bias approaches are lower than that of high-capacity

ones. Overall, both high-capacity classifiers are more susceptible to
the adverse performance impact of duplicates than the high-bias ap-
proaches. We notice the same trend as other confounders (𝑜𝑐𝑐 (𝐷𝑘)
and |𝐷𝑘 |) are varied. We present the corresponding accuracy plots

with other confounders in tech report [73].

7.3.3 Varying properties of duplicates beingmapped to “Others.”
We study how duplicates that do not arise in the train set but are

present in the test set (say, during deployment) can impact ML. We

modify and repeat our duplication process on just the test set while

keeping the train set intact. We introduce just one duplicate in the

test set that gets mapped to “Others.” Figure 3 (E-F) presents the
results on HiCapRF with OHE where |𝐸𝐷 |/|𝐸 | and 𝑜𝑐𝑐 (𝐷𝑘) are var-
ied. We find that the delta drop in accuracies with all parameters are
even more higher than the corresponding delta drops when both train
and test set were duplicated (Figure 3 (B-C)). This simply suggests

that the presence of unwarranted duplicates during the test can

cause downstream ML to suffer significantly.

7.3.4 Varying column Relevancy. We now study low vs. high

Relevancy setting with a slight twist in our simulation.We introduce

an additional noisy column in the clean dataset: All except one

column participates in CPT. Thus, we have the presence of both

high and low Relevancy columns. We introduce duplicates in both

types of columns one at a time. Figure 5 present results. We find
that duplication on a highly relevant column has a significant adverse
impact on HiCapRF performance. In contrast, the impact is negligible
when duplicates are introduced over the noisy column. Even increasing
the amount of duplication creates no impact with the low relevancy
column. We observe the same trend with HiCapANN.

7.3.5 Introducing skewness in the duplication parameters.
Until now, we assumed that all entities in 𝐸𝐷 have identical du-

plicate set sizes |𝐷𝑘 | and all duplicates in 𝐷𝑘 are equally likely to

occur. From our labeled data, we find that most entities have small

duplicate set sizes and only a few entities have many duplicates.

Also, some duplicates are more likely to occur than others in 𝐷𝑘 .

Thus, we relax these two assumptions and include distributions in

|𝐷𝑘 | and 𝑜𝑐𝑐 (𝐷𝑘) that can better represent the duplication process.

We alter our duplication process and approximate |𝐷𝑘 | with a long-

tail Zipfian distribution and 𝑜𝑐𝑐 (𝐷𝑘) with a Needle-and-Thread

distribution, varying the skew amount one at a time. Overall, we
find that none of our takeaways change or get invalidated with this
setup.We present the accuracy plots in tech report [73].

7.4 Explanations and Takeaways
We now intuitively explain the behavior of ML classifiers in

presence of duplicates with the synthetic study. We check the gen-

eralization ability of the ML models with the overfitting gap. Fig-

ure 6 presents the overfitting gap results of all classifiers. We find

that the delta accuracy drop (Figure 3) closely follows the increase

in the overfitting gap due to duplicates with both high-capacity

models, HiCapRF and HiCapANN. That is, the increase in overfit-

ting or variance with duplicates explains the accuracy drop we see.

Thus, duplicates can negatively impact the generalization capability
of high-capacity models, which are prone to overfitting. However,
as the number of training examples rises, the overfitting subsides.

This explains our trends in the high-data regime.

We find that LR exhibits no amount of extra overfitting with

duplicates. This is because the VC dimension of LR is linear in

the number of features. As the dimensionality of the feature space

expands with duplicates, VC dimension of LR expands. We get an

expanded logistic hypothesis space with duplication that is a super-

set of the true logistic hypothesis space. Thus, a larger hypothesis

space can potentially lead to more variance unless the true con-

cept is simple enough to recover in an expanded feature space. We

Y-axis: Delta increase in % overfitting gap in accuracy due to duplication with OHE

(A)

(B) (C)

(D)

X-axis: % entities with duplicates

(E)

Figure 6: Simulation results on (A) LR (B) ShallowDT (C) HiCapRF (D) LoCapANN (E) HiCapANN (with the same setup as Figure 3(B)).

check the weights of the hyperplane learned with LR in presence

of duplicates where a higher weight indicates higher importance.

We find that the absolute weights of duplicate features are often

close to zero. This suggests that the LR can learn the true concept by
completely ignoring the extra dimensions. Thus, the variance does
not rise. HiCapRF with OHE makes many binary splits on the data

to recover the true concept, causing the tree to fully grow to the

restricted height. Chances of further overfitting with duplicates are

reduced with a limited height. This explains why a set-based split
with StrE is more robust than binary splits with OHE as it allows to
pack more category splits within the same tree height.

8 DISCUSSION
8.1 Public Release
We release a public repository onGitHubwith our entire benchmark

suite [2]. This includes our entire labeled dataset of 1262 Categorical
columns along with entities in them annotated with corresponding

duplicates and their raw CSV files. We also release the code to run

downstream and benchmark suites.

8.2 Utility of our Labeled Data
Besides the utility of our labeled data for empirically benchmarking

the impact of Categorical duplicates in Section 6, it also serve as

a critical artifact to enable researchers in addressing many open

questions. We highlight two important research directions below.

a. Design accurate methods for category deduplication. Al-
though Categorical duplicates can often impact ML accuracy sub-

stantially, many existing open source AutoML tools such as Auto-

Gluon [45] and TransmogrifAI [11] do not support an automated

deduplication workflow. Cleaning duplicates manually or using

ad hoc rules can be slow and error-prone for many users, espe-

cially non-technical lay users who were promised an end-to-end

automation of the entire ML workflow. Our labeled dataset will lead
to an objective assessment of the accuracy of automation of different
deduplication approaches. Moreover, this will serve towards bulding
supervised learning-based approach to automate the category dedupli-
cation task itself. In fact, one such hand-labeled data lead to highly

accurate supervised ML approaches and even outperformed the

existing industrial-strength tools for ML feature type inference [72].

b. Theoretical quantification. Our empirical study suggests that

Categorical duplicates can increase variance since the hypothesis

space of the model can grow. This opens up several research ques-

tions at the intersection of ML theory and data management: Is it

possible to establish bounds on the increase in variance using VC-

dimension theory [79]? Can we set up a decision rule to formally

characterize when catgeory deduplication would be needed? Our

labeled data can be a key enabler to empirically validate the theory.

8.3 Takeaways for ML Practitioners
We find that the presence of Categorical duplicates can poten-

tially impact downstreamML accuracy significantly. The amount of

impact can be characterized by multiple confounders that interact

in non-trivial ways. It is not always possible to disentangle the

impact on ML with each confounder individually. However, our

empirical analyses can provide insights into when cleaning effort

would be more or less beneficial. The current practice among ML

practitioners and AutoML platform developers to handle Categori-
cal duplicates is largely ad hoc rule-based and oblivious to many

confounders. While some of the presented insights have remained

folklore for practitioners, our work presents the first systematic

scientific study and put this on an empirically rigorous footing. We

now give general guidelines and actionable insights to help them

prioritise their category deduplication effort and also potentially

design better end-to-end automation pipelines.

a. Make ML workflows less susceptible to the adverse per-
formance impact of Categorical duplicates. LR is less prone to

overfitting than RF and ANN when Categorical duplicates arise. This
is because, as duplicates increase feature dimensionality of Categori-
cals, LR can completely ignore the extra dimensions of duplicates by

setting their weights close to 0, making them overfit less. Also, StrE
is relatively more robust than OHE when using RF. Moreover, SimE
and TransformerE are significantly more robust from Categorical
duplicates compared toOHE and StrE. Moreover, unseen Categorical
duplicates that arise during the deployment phase can degrade ML

performance with OHE or StrE. Overall, Similarity encoding and

Logistic Regression or Transformer embedding can be utilized by

ML practitioners and AutoML developers if they desire to guard

their pipelines against any adverse drop in ML performance from

likely Categorical duplicates. Moreover, the impact of Categorical
duplicates get mitigated in a higher-data regime compared to a low-

data regime. Thus, whenever possible, one can consider getting

more train data to offset their impact by trading off runtime.

b. Track the overfitting gap of ML models. Category deduplica-

tion can reduce the overfitting caused by Categorical duplicates on
ML. Thus, cleaning Categorical duplicates may not be worthwhile if

the overfitting gap is already low on the raw data. Monitoring and

presenting it as an auxiliary metric to the AutoML user can provide

them with more confidence about the downstream performance.

REFERENCES
[1] Accessed July 1, 2023. FlairNLP: Framework for state-of-the-art NLP, https://github.

com/flairnlp/flair .
[2] Accessed July 1, 2023. Github Repository for studying the impact of Cleaning

Category Duplicates on ML, https://github.com/anon-categdups/CategDedupRepo.
[3] Accessed July 1, 2023. Google AutoML Tables Cleaning Duplicates User Guide-

lines. https://cloud.google.com/automl-tables/docs/data-best-practices#make_

sure_your_categorical_features_are_accurate_and_clean

[4] Accessed July 1, 2023. Google AutoML Tables Data Prep User Guidelines, https:

//cloud.google.com/automl-tables/docs/data-best-practices.

[5] Accessed July 1, 2023. Google Cloud AutoML, https:// cloud.google.com/automl/ .
[6] Accessed July 1, 2023. H2O Driverless AI, https://www.h2o.ai/products/h2o-

driverless-ai/ .
[7] Accessed July 1, 2023. H2o.AI, https://www.h2o.ai/.

[8] Accessed July 1, 2023. Microsoft AutoML, https://azure.microsoft.com/en-us/
services/machine-learning/automatedml/ .

[9] Accessed July 1, 2023. Processing Raw Data with NLTK, https://www.nltk.org/

book/ch03.html.

[10] Accessed July 1, 2023. Similarity Encoder Library, https://github.com/dirty-cat/
dirty_cat.

[11] Accessed July 1, 2023. TransmogrifAI: Automated Machine Learning for Struc-

tured Data, https://transmogrif.ai/.

[12] Accessed July 1, 2023. Trifacta: Data Wrangling Tools & Software, https://www.

trifacta.com/.

[13] Accessed July 1, 2023. https://data.ca.gov/ .
[14] Accessed July 1, 2023. https://data.ca.gov/dataset/ tsm-habitat-rapid-assessment-

survey-2016-ds28271.
[15] Accessed July 1, 2023. https://datacatalog.hsls.pitt.edu/ .
[16] Accessed July 1, 2023. https://datacatalog.hsls.pitt.edu/dataset/77 .
[17] Accessed July 1, 2023. https://data.cityofchicago.org/ .
[18] Accessed July 1, 2023. https://data.cityofchicago.org/Buildings/Vacant-and-

Abandoned-Buildings-Violations/kc9i-wq85.
[19] Accessed July 1, 2023. https://data.cityofchicago.org/Transportation/Relocated-

Vehicles/5k2z-suxx.
[20] Accessed July 1, 2023. https://data.ny.gov/ .
[21] Accessed July 1, 2023. https://data.ny.gov/Energy-Environment/Utility-Company-

Customer-Service-Response-Index-CS/w3b5-8aqf .
[22] Accessed July 1, 2023. https:// everydaydata.co/ .
[23] Accessed July 1, 2023. https:// everydaydata.co/2017/02/07/hacker-news-part-

one.html.
[24] Accessed July 1, 2023. https://github.com/fivethirtyeight/data/ .
[25] Accessed July 1, 2023. https://github.com/fivethirtyeight/data/ tree/master/ region-

survey.
[26] Accessed July 1, 2023. https://maxcandocia.com/article/2018/Oct/22/ trick-or-

treating-ages/ .
[27] Accessed July 1, 2023. https:// osmihelp.org/ .
[28] Accessed July 1, 2023. https:// osmihelp.org/ research.
[29] Accessed July 1, 2023. https:// transparentcalifornia.com/salaries/ san-francisco/ .
[30] Accessed July 1, 2023. https://www.asdcode.de/2021/01/ it-salary-survey-

december-2020.html.
[31] Accessed July 1, 2023. https://www.kaggle.com/definitelyliliput/ rawscores.
[32] Accessed July 1, 2023. https://www.kaggle.com/mlomuscio/wifi-study.
[33] Accessed July 1, 2023. https://www.kaggle.com/pushpaltayal/ etailing-customer-

survey-in-india.
[34] Richard C. Angell, George E. Freund, and Peter Willett. 1983. Automatic Spelling

Correction Using a Trigram Similarity Measure. Inf. Process. Manag. 19, 4 (1983),
255–261. https://doi.org/10.1016/0306-4573(83)90022-5

[35] Adel Ardalan, Derek Paulsen, Amanpreet Singh Saini, Walter Cai, and AnHai

Doan. 2021. Toward Data Cleaning with a Target Accuracy: A Case Study for

Value Normalization. CoRR abs/2101.05308 (2021). arXiv:2101.05308 https:

//arxiv.org/abs/2101.05308

[36] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. 2019.

Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear

neural networks. The Journal of Machine Learning Research 20, 1 (2019), 2285–

2301.

[37] Paul Suganthan G. C., Adel Ardalan, AnHai Doan, and Aditya Akella. 2018.

Smurf: Self-Service String Matching Using Random Forests. Proc. VLDB Endow.
12, 3 (2018), 278–291. https://doi.org/10.14778/3291264.3291272

[38] Patricio Cerda, Gaël Varoquaux, and Balázs Kégl. 2018. Similarity encoding

for learning with dirty categorical variables. Machine Learning 107, 8 (2018),

1477–1494.

[39] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer. https://doi.org/10.1007/978-

3-642-31164-2

[40] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data Cleaning:

Overview and Emerging Challenges. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and Sam Madden

(Eds.). ACM, 2201–2206. https://doi.org/10.1145/2882903.2912574

[41] Anamaria Crisan and Brittany Fiore-Gartland. 2021. Fits and Starts: Enterprise

Use of AutoML and the Role of Humans in the Loop. In CHI ’21: CHI Conference on
Human Factors in Computing Systems, Virtual Event / Yokohama, Japan, May 8-13,
2021, Yoshifumi Kitamura, Aaron Quigley, Katherine Isbister, Takeo Igarashi,

Pernille Bjørn, and Steven Mark Drucker (Eds.). ACM, 601:1–601:15. https:

//doi.org/10.1145/3411764.3445775

[42] Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, Pradap

Konda, Yash Govind, and Derek Paulsen. Accessed July 1, 2023. The Magellan

Data Repository. https://sites.google.com/site/anhaidgroup/useful-stuff/the-

magellan-data-repository?authuser=0.

[43] Sanjib Das, Paul Suganthan GC, AnHai Doan, Jeffrey F Naughton, Ganesh Krish-

nan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon Park.

2017. Falcon: Scaling up hands-off crowdsourced entity matching to build cloud

services. In Proceedings of the 2017 ACM International Conference on Management
of Data. 1431–1446.

[44] Dong Deng, Wenbo Tao, Ziawasch Abedjan, Ahmed K. Elmagarmid, Ihab F. Ilyas,

Guoliang Li, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan

Tang. 2019. Unsupervised String Transformation Learning for Entity Consolida-

tion. In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao,
China, April 8-11, 2019. IEEE, 196–207. https://doi.org/10.1109/ICDE.2019.00026

[45] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,

Mu Li, and Alexander J. Smola. 2020. AutoGluon-Tabular: Robust and Accurate

AutoML for Structured Data. CoRR abs/2003.06505 (2020). arXiv:2003.06505

https://arxiv.org/abs/2003.06505

[46] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,

Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Ma-

chine Learning. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,

Masashi Sugiyama, and Roman Garnett (Eds.). 2962–2970. http://papers.nips.cc/

paper/5872-efficient-and-robust-automated-machine-learning

[47] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and

Joaquin Vanschoren. 2019. An Open Source AutoML Benchmark. arXiv preprint
arXiv:1907.00909 (2019).

[48] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan

Rampalli, Jude Shavlik, and Xiaojin Zhu. 2014. Corleone: Hands-off crowdsourc-

ing for entity matching. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 601–612.

[49] Trevor Hastie, Jerome H. Friedman, and Robert Tibshirani. 2001. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer. https:

//doi.org/10.1007/978-0-387-21606-5

[50] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit

Chaudhuri. 2018. Transform-Data-by-Example (TDE): An Extensible Search

Engine for Data Transformations. Proceedings of the VLDB Endowment 11, 10
(2018), 1165–1177.

[51] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated
Machine Learning - Methods, Systems, Challenges. Springer. https://doi.org/10.

1007/978-3-030-05318-5

[52] Nick Hynes, D Sculley, and Michael Terry. 2017. The Data Linter: Lightweight,

Automated Sanity Checking for ML Data Sets. In NIPS MLSys Workshop.
[53] Zhongjun Jin, Michael R Anderson, Michael Cafarella, and Hosagrahar V Ja-

gadish. 2017. Foofah: A Programming-By-Example System for Synthesizing

Data Transformation Programs. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1607–1610.

[54] Mayank Kejriwal and Daniel P. Miranker. 2015. Semi-supervised Instance

Matching Using Boosted Classifiers. In The Semantic Web. Latest Advances and
New Domains - 12th European Semantic Web Conference, ESWC 2015, Portoroz,
Slovenia, May 31 - June 4, 2015. Proceedings (Lecture Notes in Computer Sci-
ence), Fabien Gandon, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe

Cudré-Mauroux, and Antoine Zimmermann (Eds.), Vol. 9088. Springer, 388–402.

https://doi.org/10.1007/978-3-319-18818-8_24

[55] Pradap Venkatramanan Konda. 2018. Magellan: Toward building entity matching
management systems. The University of Wisconsin-Madison.

[56] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Jiannan Wang, and Eugene

Wu. 2016. ActiveClean: An Interactive Data Cleaning Framework For Modern

Machine Learning. In Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM, 2117–2120.

https://doi.org/10.1145/2882903.2899409

[57] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017.

BoostClean: Automated Error Detection and Repair for Machine Learning. CoRR
abs/1711.01299 (2017). arXiv:1711.01299 http://arxiv.org/abs/1711.01299

[58] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-

FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples. In

SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh

Srivastava (Eds.). ACM, 1064–1076. https://doi.org/10.1145/3448016.3452824

https://github.com/flairnlp/flair
https://github.com/flairnlp/flair
https://github.com/anon-categdups/CategDedupRepo
https://cloud.google.com/automl-tables/docs/data-best-practices#make_sure_your_categorical_features_are_accurate_and_clean
https://cloud.google.com/automl-tables/docs/data-best-practices#make_sure_your_categorical_features_are_accurate_and_clean
https://cloud.google.com/automl-tables/docs/data-best-practices
https://cloud.google.com/automl-tables/docs/data-best-practices
https://cloud.google.com/automl/
https://www.h2o.ai/products/h2o-driverless-ai/
https://www.h2o.ai/products/h2o-driverless-ai/
https://www.h2o.ai/
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
https://www.nltk.org/book/ch03.html
https://www.nltk.org/book/ch03.html
https://github.com/dirty-cat/dirty_cat
https://github.com/dirty-cat/dirty_cat
https://transmogrif.ai/
https://www.trifacta.com/
https://www.trifacta.com/
https://data.ca.gov/
https://data.ca.gov/dataset/tsm-habitat-rapid-assessment-survey-2016-ds28271
https://data.ca.gov/dataset/tsm-habitat-rapid-assessment-survey-2016-ds28271
https://datacatalog.hsls.pitt.edu/
https://datacatalog.hsls.pitt.edu/dataset/77
https://data.cityofchicago.org/
https://data.cityofchicago.org/Buildings/Vacant-and-Abandoned-Buildings-Violations/kc9i-wq85
https://data.cityofchicago.org/Buildings/Vacant-and-Abandoned-Buildings-Violations/kc9i-wq85
https://data.cityofchicago.org/Transportation/Relocated-Vehicles/5k2z-suxx
https://data.cityofchicago.org/Transportation/Relocated-Vehicles/5k2z-suxx
https://data.ny.gov/
https://data.ny.gov/Energy-Environment/Utility-Company-Customer-Service-Response-Index-CS/w3b5-8aqf
https://data.ny.gov/Energy-Environment/Utility-Company-Customer-Service-Response-Index-CS/w3b5-8aqf
https://everydaydata.co/
https://everydaydata.co/2017/02/07/hacker-news-part-one.html
https://everydaydata.co/2017/02/07/hacker-news-part-one.html
https://github.com/fivethirtyeight/data/
https://github.com/fivethirtyeight/data/tree/master/region-survey
https://github.com/fivethirtyeight/data/tree/master/region-survey
https://maxcandocia.com/article/2018/Oct/22/trick-or-treating-ages/
https://maxcandocia.com/article/2018/Oct/22/trick-or-treating-ages/
https://osmihelp.org/
https://osmihelp.org/research
https://transparentcalifornia.com/salaries/san-francisco/
https://www.asdcode.de/2021/01/it-salary-survey-december-2020.html
https://www.asdcode.de/2021/01/it-salary-survey-december-2020.html
https://www.kaggle.com/definitelyliliput/rawscores
https://www.kaggle.com/mlomuscio/wifi-study
https://www.kaggle.com/pushpaltayal/etailing-customer-survey-in-india
https://www.kaggle.com/pushpaltayal/etailing-customer-survey-in-india
https://doi.org/10.1016/0306-4573(83)90022-5
https://arxiv.org/abs/2101.05308
https://arxiv.org/abs/2101.05308
https://doi.org/10.14778/3291264.3291272
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/3411764.3445775
https://doi.org/10.1145/3411764.3445775
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository?authuser=0
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository?authuser=0
https://doi.org/10.1109/ICDE.2019.00026
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-319-18818-8_24
https://doi.org/10.1145/2882903.2899409
https://arxiv.org/abs/1711.01299
http://arxiv.org/abs/1711.01299
https://doi.org/10.1145/3448016.3452824

[59] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. CleanML:

A Study for Evaluating the Impact of Data Cleaning onMLClassification Tasks. In

37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece,
April 19-22, 2021. IEEE, 13–24. https://doi.org/10.1109/ICDE51399.2021.00009

[60] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.

2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50–60. https://doi.org/10.14778/3421424.3421431

[61] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:

A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[62] David Maier. 1983. The theory of relational databases. Vol. 11. Computer science

press Rockville.

[63] Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, and Mohamed Sar-

wat. 2020. A Comprehensive Benchmark Framework for Active Learning Meth-

ods in Entity Matching. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-

Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1133–1147.

https://doi.org/10.1145/3318464.3380597

[64] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.

Deep Learning for Entity Matching: A Design Space Exploration. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine,

and Philip A. Bernstein (Eds.). ACM, 19–34. https://doi.org/10.1145/3183713.

3196926

[65] Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From

Cleaning before ML to Cleaning for ML. IEEE Data Eng. Bull. 44, 1 (2021), 24–41.
http://sites.computer.org/debull/A21mar/p24.pdf

[66] Felix Neutatz, Binger Chen, Yazan Alkhatib, Jingwen Ye, and Ziawasch Abed-

jan. 2022. Data Cleaning and AutoML: Would an optimizer choose to clean?

Datenbank-Spektrum (2022), 1–10.

[67] Fatemah Panahi, Wentao Wu, AnHai Doan, and Jeffrey F. Naughton. 2017. To-

wards Interactive Debugging of Rule-based Entity Matching. In Proceedings
of the 20th International Conference on Extending Database Technology, EDBT
2017, Venice, Italy, March 21-24, 2017, Volker Markl, Salvatore Orlando, Bern-

hard Mitschang, Periklis Andritsos, Kai-Uwe Sattler, and Sebastian Breß (Eds.).

OpenProceedings.org, 354–365. https://doi.org/10.5441/002/edbt.2017.32

[68] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[69] Jinglin Peng, Weiyuan Wu, Brandon Lockhart, Song Bian, Jing Nathan Yan,

Linghao Xu, Zhixuan Chi, Jeffrey M. Rzeszotarski, and Jiannan Wang. 2021.

DataPrep.EDA: Task-Centric Exploratory Data Analysis for Statistical Modeling

in Python. In Proceedings of the 2021 International Conference on Management of
Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China.

[70] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1, 1 (1986),

81–106.

[71] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-

Clean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10,

11 (2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[72] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.

2021. Towards Benchmarking Feature Type Inference for AutoML Platforms. In

Proceedings of the 2021 International Conference on Management of Data. 1584–
1596.

[73] Vraj Shah, Thomas Parashos, and Arun Kumar. Accessed July 1, 2023. How
do Categorical Duplicates Affect ML? A New Benchmark and Empirical Analyses
(Technical Report). https://adalabucsd.github.io/papers/TR_2023_CategDedup.
pdf.

[74] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding Machine
Learning - From Theory to Algorithms. Cambridge University Press.

http://www.cambridge.org/de/academic/subjects/computer-science/pattern-

recognition-and-machine-learning/understanding-machine-learning-theory-

algorithms

[75] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel

Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and

Nan Tang. 2017. Generating Concise Entity Matching Rules. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao

Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1635–1638. https:

//doi.org/10.1145/3035918.3058739

[76] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel

Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and

Nan Tang. 2017. Synthesizing Entity Matching Rules by Examples. Proc. VLDB
Endow. 11, 2 (2017), 189–202. https://doi.org/10.14778/3149193.3149199

[77] Survey. Accessed July 1, 2023. 2021 State of Data Science and Machine Learning.

https://www.kaggle.com/kaggle-survey-2021.

[78] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel

Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-trained Transformer

Is Almost All You Need towards Democratizing Data Preparation. Proc. VLDB
Endow. 14, 8 (2021), 1254–1261. https://doi.org/10.14778/3457390.3457391

[79] Vladimir Naumovich Vapnik. 2000. The Nature of Statistical Learning Theory,
Second Edition. Springer.

[80] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-

ruganathan. 2020. ZeroER: Entity Resolution using Zero Labeled Examples. In

Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini,

and Hung Q. Ngo (Eds.). ACM, 1149–1164. https://doi.org/10.1145/3318464.

3389743

[81] Doris Xin, Eva Yiwei Wu, Doris Jung Lin Lee, Niloufar Salehi, and Aditya G.

Parameswaran. 2021. Whither AutoML? Understanding the Role of Automation

in Machine Learning Workflows. In CHI ’21: CHI Conference on Human Factors in
Computing Systems, Virtual Event / Yokohama, Japan, May 8-13, 2021, Yoshifumi

Kitamura, Aaron Quigley, Katherine Isbister, Takeo Igarashi, Pernille Bjørn, and

Steven Mark Drucker (Eds.). ACM, 83:1–83:16. https://doi.org/10.1145/3411764.

3445306

[82] Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching

using Pre-trained Deep Models and Transfer Learning. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu,

Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo

Baeza-Yates, and Leila Zia (Eds.). ACM, 2413–2424. https://doi.org/10.1145/

3308558.3313578

https://doi.org/10.1109/ICDE51399.2021.00009
https://doi.org/10.14778/3421424.3421431
https://doi.org/10.1145/3318464.3380597
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3183713.3196926
http://sites.computer.org/debull/A21mar/p24.pdf
https://doi.org/10.5441/002/edbt.2017.32
https://doi.org/10.14778/3137628.3137631
https://adalabucsd.github.io/papers/TR_2023_CategDedup.pdf
https://adalabucsd.github.io/papers/TR_2023_CategDedup.pdf
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1145/3035918.3058739
https://doi.org/10.1145/3035918.3058739
https://doi.org/10.14778/3149193.3149199
https://www.kaggle.com/kaggle-survey-2021
https://doi.org/10.14778/3457390.3457391
https://doi.org/10.1145/3318464.3389743
https://doi.org/10.1145/3318464.3389743
https://doi.org/10.1145/3411764.3445306
https://doi.org/10.1145/3411764.3445306
https://doi.org/10.1145/3308558.3313578
https://doi.org/10.1145/3308558.3313578

	Abstract
	1 Introduction
	2 Related Work
	2.1 Entity Matching (EM) and String Matching (SM) Approaches
	2.2 Existing Labeled Datasets
	2.3 Data Cleaning and Data Prep for ML
	2.4 AutoML Platforms

	3 Our Approach
	4 Preliminaries
	4.1 Assumptions and Scope
	4.2 Definitions

	5 Our Hand-Labeled Dataset
	5.1 Data Sources
	5.2 Labeling Process
	5.3 Types of Duplicates and Data Statistics

	6 Downstream Benchmark
	6.1 Models and Encodings
	6.2 Datasets used for Analyses
	6.3 Methodology
	6.4 Results

	7 In-depth Simulation Study
	7.1 Models and Encodings
	7.2 Setup and Data Synthesis
	7.3 Results
	7.4 Explanations and Takeaways

	8 Discussion
	8.1 Public Release
	8.2 Utility of our Labeled Data
	8.3 Takeaways for ML Practitioners

	References

